flask_sqlalchemy常用查询语句总结

时间:2024-10-23 08:10:13

flask_sqlalchemy相关查询语句总结:

班级表:

学生表:

 

返回student表中所有数据并限制返回条数:select……from……limit()

result = (,,,,).limit(10).all()

对应的SQL和结果:

SELECT  AS student_id,  AS student_name,  AS student_gender,  AS student_age,  AS student_classes 
FROM student
LIMIT ? OFFSET ?

[(1, '张三', 'male', '18', 'java'), (2, '李四', 'female', '19', 'c++'), (3, '王五', 'male', '22', 'php'), (4, '赵六', 'female', '25', 'matalab'), (5, 'lee', 'man', '18', 'python'), (6, '张三', 'male', '18', 'java'), (7, '李四', 'female', '19', 'c++'), (8, '王五', 'male', '22', 'php'), (9, '赵六', 'female', '25', 'matalab'), (10, 'lee', 'man', '18', 'python')]

 

过滤条件查询: select……from……where ……and……

restult = (,,,,).filter(=='java').filter(=='female')
print(restult)
print(result..all())

返回的SQL和对应的结果:

SELECT  AS student_id,  AS student_name,  AS student_gender,  AS student_age,  AS student_classes 
FROM student 
WHERE  = ? AND  = ?

结果:[(11, '胡和', 'female', '18', 'java')]

 

过滤条件or_,and_ 的使用,需要先导入from sqlalchemy import or_,and_

task_filter = {
or_(
    and_(=='female',
        =='java'
        ),
    and_(
         == 18,
         == 'python'
    )
)
}
restult2 = (, , , , ).filter(*task_filter).all()
print(restult2)

返回的SQL和对应的结果:

SELECT  AS student_id,  AS student_name,  AS student_gender,  AS student_age,  AS student_classes 
FROM student 
WHERE  = ? AND  = ? OR  = ? AND  = ?

[(5, 'lee', 'male', '18', 'python'), 
(10, '乐奋', 'male', '18', 'python'), 
(11, '胡和', 'female', '18', 'java')]

上面这个filter中有两个条件组,关系为or,每个条件组里有一些and关系的条件。

 

两表联合查询:student表与grades表联合查询

restult3 = (, , , , , ).filter(
     == 'java').filter( == 'male').filter(Student.cls_id == ).all()

返回的SQL和对应的结果:

SELECT  AS student_id,  AS student_name,  AS student_gender,  AS student_age,  AS student_classes,  AS grades_grade 
FROM student, grades 
WHERE  = ? AND  = ? AND student.cls_id = 

[(6, '张三', 'male', '18', 'java', '一年级(3)班')]

 

Count函数使用:

task_filter={
    and_( == 'male',
          == 'python')
}
restult4 = (, , , , ).filter(*task_filter).count()
print(restult4)

 返回的SQL和对应的结果:

SELECT
    count(*) AS count_1
FROM
    (
       select……from……where ……and……
        )
        AS anon_1

结果为:4

 

进行优化后的()函数: 无子查询,效率高

restult5 = (()).filter(*task_filter).scalar()
print((()).filter(*task_filter))
print(restult5)

 返回的SQL和对应的结果: 

select count() as count_1
FROM
    student
WHERE
     = ? AND  = ?

结果为:4

 

Join查询:

query = (, , , , , ).join(Grades,Student.cls_id==).filter(*task_filter).order_by().limit(2)
print(query)
print(())

返回的SQL和结果:

SELECT  AS student_id,  AS student_name,  AS student_gender,  AS student_age,  AS student_classes,  AS grades_grade 
FROM student JOIN grades ON student.cls_id =  
WHERE  = ? AND  = ? ORDER BY 
 LIMIT ? OFFSET ?
[(6, '张三', 'male', '18', 'java', '一年级(3)班')]

 

with_entities()方法 指定某列并去重

#返回指定的一列
query1 = (, , , , ).with_entities().distinct().all()
print((, , , , ).with_entities().distinct())
print(query1)
#返回指定的两列
query = (, , , , ).with_entities(,Student.cls_id).distinct().all()

返回对应的sql和查询结果:

SELECT DISTINCT  AS student_classes 
FROM student
[('java',), ('c++',), ('php',), ('matalab',), ('python',), ('C',)]

with_entities()方法筛选字段:

query = (Grades,and_(Student.cls_id==)).filter(=='python').with_entities(,)
print(query)  #打印SQL
results = ()
print(results)  #打印结果
data = [dict(zip((), result)) for result in results]
print(data) #将结果转为dict

对应结果如下:

SELECT  AS student_name,  AS grades_grade 
FROM student JOIN grades ON student.cls_id =  
WHERE  = 'python'

[('乐奋', '一年级(5)班'), ('石雨', '一年级(5)班'), ('马庆', '一年级(1)班'), ('刘胜', '一年级(4)班')]

[{'name': '乐奋', 'grade': '一年级(5)班'}, {'name': '石雨', 'grade': '一年级(5)班'}, {'name': '马庆', 'grade': '一年级(1)班'}, {'name': '刘胜', 'grade': '一年级(4)班'}]

 

获取多个Model的记录:

除了筛选字段外,还可以用另一个方法获取多个 Model 的记录。那就是,返回两个 Model 的所有字段:

query = (Student,Grades).join(Grades,and_(Student.cls_id==)).filter(=='python')
print(query)
restult = ()
print(restult)

返回的SQL和结果:

SELECT  AS student_id,  AS student_name,  AS student_age,  AS student_gender,  AS student_classes, student.cls_id AS student_cls_id,  AS grades_id,  AS grades_name,  AS grades_grade 
FROM student JOIN grades ON student.cls_id =  
WHERE  = 'python'
[(<Student 10>, <Grades 5>), (<Student 15>, <Grades 5>), (<Student 16>, <Grades 8>), (<Student 17>, <Grades 9>)]

使用上面的语法直接返回 Account 和 Bind 对象,可以进行更加灵活的操作。

 

group_by函数:

student = (, , , , ).group_by("classes").all()  # 按照组
print((, , , , ).group_by("classes"))
print(student)

对应的SQL和group_by查询结果:

SELECT  AS student_id,  AS student_name,  AS student_gender,  AS student_age,  AS student_classes 
FROM student GROUP BY 
[(18, '贾华', 'female', '19', 'C'), (12, '李天', 'male', '19', 'c++'), (11, '胡和', 'female', '18', 'java'), (14, '李广', 'male', '24', 'matalab'), (13, '陈安', 'male', '26', 'php'), (17, '刘胜', 'male', '25', 'python')]

 

倒序排序 order_by……desc:

query = (, , , , ).order_by(())
print(query)
print(())

对应的SQL和返回结果:

SELECT  AS student_id,  AS student_name,  AS student_gender,  AS student_age,  AS student_classes 
FROM student ORDER BY  DESC
[(13, '陈安', 'male', '26', 'php'), (4, '赵六', 'female', '25', 'matalab'), (9, '赵六', 'female', '25', 'matalab'), (17, '刘胜', 'male', '25', 'python'), (14, '李广', 'male', '24', 'matalab'), (3, '王五', 'male', '22', 'php'), (8, '王五', 'male', '22', 'php'), (16, '马庆', 'male', '22', 'python'), (1, '张三', 'male', '20', 'java'), (2, '李四', 'female', '19', 'c++'), (7, '李四', 'female', '19', 'c++'), (12, '李天', 'male', '19', 'c++'), (18, '贾华', 'female', '19', 'C'), (5, 'lee', 'male', '18', 'python'), (6, '张三', 'male', '18', 'java'), (10, '乐奋', 'male', '18', 'python'), (11, '胡和', 'female', '18', 'java'), (15, '石雨', 'female', '17', 'python')]

 

按用户名模糊查询(两表联合查询名称 .like('%李%')):

query = (, , , , ,).join(Grades,Student.cls_id==).filter(('%李%'))
print(query)
print(())

非外键连接,表student与表grades内连接inner join

对应的SQL和返回结果:

SELECT  AS student_id,  AS student_name,  AS student_gender,  AS student_age,  AS student_classes,  AS grades_grade 
FROM student JOIN grades ON student.cls_id =  
WHERE  LIKE "%李%"
[(7, '李四', 'female', '19', 'c++', '一年级(2)班'), (12, '李天', 'male', '19', 'c++', '一年级(2)班'), (14, '李广', 'male', '24', 'matalab', '一年级(3)班')]

还可以在 filter 得到结果后继续加 join 进行多表联查

 

outerjoin左外连接:

query = (, , , , ,).outerjoin(Grades,Student.cls_id==).filter(('%李%'))
SELECT  AS student_id,  AS student_name,  AS student_gender,  AS student_age,  AS student_classes,  AS grades_grade 
FROM student LEFT OUTER JOIN grades ON student.cls_id =  
WHERE  LIKE ?

[(2, '李四', 'female', '19', 'c++', None), (7, '李四', 'female', '19', 'c++', '一年级(2)班'), (12, '李天', 'male', '19', 'c++', '一年级(5)班'), (14, '李广', 'male', '24', 'matalab', '一年级(3)班')]

 

outerjoin相当于LEFT OUTER JOIN 左外连接;outerjoin( ) 返回结果有null

 

多表联合查询(没有外键):

query = (, , , , ,).join(Grades,and_(Student.cls_id==,=='python',=='一年级(5)班'))
print(query)
print(())

 对应的SQL和返回结果:

SELECT  AS student_id,  AS student_name,  AS student_gender,  AS student_age,  AS student_classes,  AS grades_grade 
FROM student JOIN grades ON student.cls_id =  
AND  = "python" 
AND  = "一年级(5)班"

[(10, '乐奋', 'male', '18', 'python', '一年级(5)班'), (15, '石雨', 'female', '17', 'python', '一年级(5)班')]

这里只有两张表,如果是三张表继续在后面join()即可。

要联结超过 2 张以上的表,可以直接在 join 得到的结果之后链式调用 join 。也可以在 filter 的结果后面链式调用 join 。join 和 filter 返回的都是 query 对象,因此可以无限链式调用下去。

 

外键是否设置中Join()函数的区别:

没有设置外键:

query = (, , , 
, ,)
.join(Grades,Student.cls_id==)
.filter(('%李%'))

已经设置外键:

query = (, , , , ,
)
.join(Grades)
.filter(('%李%'))

 

paginate()函数实现分页功能:

query =  (Student).order_by(()).paginate(1,5)
print((Student).order_by(()))
print()
print()
print()

对应SQL和结果:

SELECT  AS student_id,  AS student_name,  AS student_age,  AS student_gender,  AS student_classes, student.cls_id AS student_cls_id 
FROM student ORDER BY  DESC
[<Student 13>, <Student 4>, <Student 9>, <Student 17>, <Student 14>]

这里的结果返回的是model对象,需要在query()括号里明确字段:

query =  (, , , , ).order_by(()).paginate(1,5)
print((, , , , ).order_by(()))
print()

返回的是第一页前5个的结果:

[(13, '陈安', 'male', '26', 'php'), (4, '赵六', 'female', '25', 'matalab'), (9, '赵六', 'female', '25', 'matalab'), (17, '刘胜', 'male', '25', 'python'), (14, '李广', 'male', '24', 'matalab')]

 

in_、notin_函数:

query = (, ).filter(.in_([1,3,4]))
print(())
query = (, ,).filter(.notin_([18, 19, 20,22]))
print(())

返回结果:

[(1, '张三'), (3, '王五'), (4, '赵六')]
[(4, '赵六', '25'), (9, '赵六', '25'), (13, '陈安', '26'), (14, '李广', '24'), (15, '石雨', '17'), (17, '刘胜', '25')]

 

组合 union与union_all函数:

#组合 union与union_all函数 组合的字段数量应一致
query1 = (, ).filter(>22)
query2 = (,).filter(>1).distinct()
print((query2))
print((query2).all())  #union默认会去重
res = query1.union_all(query2).all()  #union_all默认不去重
print(res)

对应SQL和结果:

SELECT anon_1.student_id AS anon_1_student_id, anon_1.student_name AS anon_1_student_name 
FROM (SELECT  AS student_id,  AS student_name 
FROM student 
WHERE  > ? UNION SELECT  AS grades_id,  AS grades_name 
FROM grades 
WHERE  > ?) AS anon_1
[(2, '李四'), (3, '王五'), (4, '赵六'), (5, 'lee'), (6, '张三'), (7, '李四'), (8, '王五'), (9, '赵六'), (10, 'lee'), (11, '张三'), (12, '李四'), (13, '王五'), (13, '陈安'), (14, '李广'), (14, '赵六'), (15, 'lee'), (16, '张三'), (17, '刘胜'), (17, '李四'), (18, '王五'), (19, '赵六'), (20, 'lee')]
[(4, '赵六'), (9, '赵六'), (13, '陈安'), (14, '李广'), (17, '刘胜'), (2, '李四'), (3, '王五'), (4, '赵六'), (5, 'lee'), (6, '张三'), (7, '李四'), (8, '王五'), (9, '赵六'), (10, 'lee'), (11, '张三'), (12, '李四'), (13, '王五'), (14, '赵六'), (15, 'lee'), (16, '张三'), (17, '李四'), (18, '王五'), (19, '赵六'), (20, 'lee')]

 

Group_by分组统计并排序

query = (,().label("cnt")).group_by('classes').order_by(desc('cnt'))
print(query) 
print(())

返回的SQL和结果:

SELECT  AS student_classes, count() AS cnt 
FROM student GROUP BY  ORDER BY cnt DESC
[('python', 5), ('c++', 3), ('java', 3), ('matalab', 3), ('php', 3), ('C', 1)]

 

子查询:

query1 = (Student,Grades).filter(Student.cls_id.in_(().filter(=='一年级(5)班'))).with_entities(,,,,).distinct()
print(query1)
print(())

返回的SQL和结果:

SELECT DISTINCT  AS student_id,  AS student_name,  AS student_age,  AS student_gender,  AS student_classes 
FROM student 
WHERE student.cls_id IN (SELECT  AS grades_id 
FROM grades 
WHERE  = '一年级(5)班')
[(10, '乐奋', '18', 'male', 'python'), (15, '石雨', '17', 'female', 'python')]

subquery = (().label("sid")).filter(Student.cls_id==).correlate(Grades).as_scalar()
#第一步:(().label("sid")).filter(Student.cls_id==)
#这句话SQL为:SELECT count() AS sid FROM student WHERE student.cls_id =     #如果直接运行,则会报错
#第二步:.correlate(Grades).as_scalar()   ==> 代表此时不执行查询操作,将其当作条件,在Grades表中查询时,才执行查询
restult = (, subquery)
#sql语句为:select   subquery  from Grades
print(restult)
# 第三步:将subquery替换为上面的条件,则此句的SQL为:
# SELECT  AS grades_name, (SELECT count() AS sid FROM student WHERE student.cls_id = ) AS anon_1 FROM grades
print(())

 

动态组合条件。针对不同的场景,可能需要不同的查询条件,类似动态的拼接SQL 语句。

if filter_type == 1:
            search = and_( ==1,or_(
                and_(GameRoom.white_user_id == user_id,
                     GameRoom.active_player == 1),
                and_(GameRoom.black_user_id == user_id,
                     GameRoom.active_player == 0)))
        elif filter_type == 2:
            search = and_( ==1,or_(
                and_(GameRoom.white_user_id == user_id,
                     GameRoom.active_player == 0),
                and_(GameRoom.black_user_id == user_id,
                     GameRoom.active_player == 1)))
        elif filter_type == 3:
            search = GameRoom.create_by == user_id
        
        (GameRoom).filter(search).all()

 

直接运行SQL语句查询:

如果查询实在太复杂,觉得用SQLAlchemy查询方式很难实现,或者要通过存储过程实现查询,可以让SQLAlchemy直接运行SQL语句返回结果。

sql ="""select b.user_id,b.user_name,,,a.add_score from
            (select user_id, sum(score_new - score_old) as add_score from user_score_log
            where year(create_date)=year(now()) and month(create_date)=month(now())
            group by user_id) a join users b on a.user_id=b.user_id
            order by a.add_score desc limit 50"""
list_top = (sql).fetchall()

 

这些查询语句已经解决了大部分的需求。

注:一般写完查询后,应该打印生成的 SQL 语句查看一下有没有性能问题。

 

 

聚合函数:sum、max、min、avg、count

求和:
query = ((Student.cls_id))

求最大值:
query = ((Student.cls_id))

求最小值:
query = ((Student.cls_id))

求平均值:
query = ((Student.cls_id))

进行统计:
query = (())

filter常用过滤条件:==、!=、like(区分大小写,模糊查询)、ilike(不区分大小写)、in、not in、字段为空、不为空、and、or

from sqlalchemy import or_,and_,func,desc

query = ().filter( == 6)

query = ().filter( != 6)

query = ().filter(('%王%'))

query = (, ).filter(.in_([1,3,4]))

query = (, ,).filter(.notin_([18, 19, 20,22]))

query = ().filter(Student.cls_id==None)

query = ().filter(Student.cls_id!=None)

query = ().filter(and_(==18,=='python'))

query = ().filter(or_(==18,=='python'))

print(query)   #打印SQL
print(())   #打印结果

filter与filter_by的区别:

filter -》 column == expression
传入参数的写法,要用:类名.列名 两个等号 去判断
举例:
query().filter(==’Ed Jones’)
且更复杂的查询的语法,比如_and(),or_()等多个条件的查询,只支持filter
举例:
(or_( == ‘ed’,  == ‘wendy’))
(and_( == ‘ed’,  == ‘Ed Jones’))

filter_by -》keyword = expression
传入参数的写法,只需要用:(不带类名的)列名 单个等号 就可以判断。
-》filter中,语法更加贴近于,类似于,Python的语法。
举例:
query().filter_by(fullname=’Ed Jones’)

filter_by() 只接受键值对参数,所以 filter_by() 不支持><(大于和小于)和 and_、or_查询。

在使用多条件匹配的时候,filter需要借助sqlalchemy里的and_ ,or_ ; 而filter_by不需要,直接把多个匹配条件写在一起。

group_by和having子句:

query = (,()).group_by().having( > 20)
print(query)
print(())

对应的SQL和结果:

SELECT  AS student_age, count() AS count_1 
FROM student GROUP BY  
HAVING  > ?
[('22', 3), ('24', 1), ('25', 3), ('26', 1)]

 

参考链接:/post/join-in-flash-sqlalchemy/

/huchong/p/#_label3_1_1_0

/zhongyehai/p/