Python入门笔记(七)-第十五章. 下载数据

时间:2024-10-17 07:25:27

15.1 csv文件

例1:分析CSV文件头
CSV文件其文件以纯文本的形式存储表格数据(数字和文本)。纯文本意味着该文件是一个字符序列,不含必须像二进制数字那样被解读的数据。
在这里插入图片描述
next()返回文件的下一行

import csv                              # 用于分析CSV文件中的数据行

filename = 'sitka_weather_07-2014.csv'
with open(filename) as f:               # 打开文件,并将结果文件对象存储在f中
    reader = csv.reader(f)              # 创建与该文件相关联的阅读器对象,并存储在reader中
    header_row = next(reader)           # 第一行
    print(header_row)                   # 输出显示第一行

数据太多这里剪切一部分
在这里插入图片描述
reader处理文件以逗号分隔第一行数据,并存储在列表中。

例2:打印文件头及其位置
为让文件头数据更容易理解,将列表中的每个文件头及其位置打印出来。
调用enumerate()来获取每个元素的索引及其值

import csv                              # 用于分析CSV文件中的数据行

filename = 'sitka_weather_07-2014.csv'
with open(filename) as f:               # 打开文件,并将结果文件对象存储在f中
    reader = csv.reader(f)              # 创建与该文件相关联的阅读器对象,并存储在reader中
    header_row = next(reader)           # 第一行

    for index, column_header in enumerate(header_row):  # 调用enumerate()来获取每个元素的索引及其值
        print(index, column_header)

这里截取一部分图
在这里插入图片描述

例3:提取并读取数据
阅读器对象从其停留的地方继续往下读取CSV文件,每次都自动返回当前所处位置的下一行,由于我们已经读取了文件头行,这个循环将从第二行开始,这行便是数据。

import csv                              # 用于分析CSV文件中的数据行

filename = 'sitka_weather_07-2014.csv'
with open(filename) as f:               # 打开文件,并将结果文件对象存储在f中
    reader = csv.reader(f)              # 创建与该文件相关联的阅读器对象,并存储在reader中
    header_row = next(reader)           # 第一行

    highs = []                          # 空列表
    for row in reader:                  # 遍历每行
        high = int(row[1])              # str转int
        highs.append(high)              # 每行的第1个元素,从第0个开始

    print(highs)

在这里插入图片描述
在这里插入图片描述

例:绘制气温图表

import csv                              # 用于分析CSV文件中的数据行
from matplotlib import pyplot as plt    # 画图需要

# 从文件中获取最高气温
filename = 'sitka_weather_07-2014.csv'
with open(filename) as f:               # 打开文件,并将结果文件对象存储在f中
    reader = csv.reader(f)              # 创建与该文件相关联的阅读器对象,并存储在reader中
    header_row = next(reader)           # 第一行

    highs = []                          # 空列表
    for row in reader:                  # 遍历每行
        high = int(row[1])
        highs.append(high)              # 每行的第1个元素,从第0个开始

    print(highs)

# 根据数据绘制图像
fig = plt.figure(dpi=128, figsize=(10, 6))  #设置图像大小尺寸
plt.plot(highs, c='red')

# 设置图形的格式
plt.title("Daily high temperatures, July 2014", fontsize=24)  # 标题
plt.xlabel('', fontsize=16)                                   # x轴
plt.ylabel("Temperature(F)", fontsize=16)                     # y轴
plt.tick_params(axis='both', which='major', labelsize=16)     # 刻度标记大小

plt.show()

在这里插入图片描述


datetime模块

from datetime import datetime

first_date = datetime.strptime('2014-7-1', '%Y-%m-%d')  # 第一个参数传入实参,第二个给设置的格式
print(first_date)
2014-07-01 00:00:00

‘%Y-’ 让python将字符串中第一个连字符前面的部分视为四位的年份;
‘%m-’ 让python将第二个连字符前面的部分视为表示月份的数字;
‘%d’ 让python将字符串的最后一部分视为月份中的一天

方法strptime()可接受各种实参,并根据它们来决定如何解读时期,下表列出这些实参:

实参 含义
%A 星期的名称,如Monday
%B 月份名,如January
%m 用数字表示的月份(01~12)
%d 用数字表示的月份的一天(01~31)
%Y 四位的年份,如2020
%y 两位的年份,如20
%H 24小时制的小时数(00~23)
%I 12小时制的小时数(01~12)
%p am或pm
%M 分钟数(00~59)
%S 秒数(00~61)

例2:在图表中添加日期

import csv                              # 用于分析CSV文件中的数据行
from matplotlib import pyplot as plt    # 画图需要
from datetime import datetime           # 将字符串转换为对应日期需要

# 从文件中获取最高气温和日期
filename = 'sitka_weather_07-2014.csv'
with open(filename) as f:               # 打开文件,并将结果文件对象存储在f中
    reader = csv.reader(f)              # 创建与该文件相关联的阅读器对象,并存储在reader中
    header_row = next(reader)         

    dates, highs = [], []               # 日期,最高温度初始化为空列表
    for row in reader:                  # 遍历每行
        current_date = datetime.strptime(row[0], "%Y-%m-%d")  # 每行第零个元素
        dates.append(current_date)      # 添加日期

        high = int(row[1])              # 最高温度转化为整型
        highs.append(high)              # 添加温度

# 根据数据绘制图像
fig = plt.figure(dpi=128, figsize=(10, 6))
plt.plot(dates, highs, c='red')

# 设置图形的格式
plt.title("Daily high temperatures, July 2014", fontsize=24)  # 标题
plt.xlabel('', fontsize=16)                                   # x轴
fig.autofmt_xdate()                                           # 绘制斜的x轴标签
plt.ylabel("Temperature(F)", fontsize=16)                     # y轴
plt.tick_params(axis='both', which='major', labelsize=16)     # 刻度标记大小

plt.show()

在这里插入图片描述


例3:添加更多数据,涵盖更长的时间
这里只是换了一个数据更多的文件,改了一个标题

import csv                              # 用于分析CSV文件中的数据行
from matplotlib import pyplot as plt    # 画图需要
from datetime import datetime           # 将字符串转换为对应日期需要

# 从文件中获取最高气温和日期
filename = 'sitka_weather_2014.csv'
with open(filename) as f:               # 打开文件,并将结果文件对象存储在f中
    reader = csv.reader(f)              # 创建与该文件相关联的阅读器对象,并存储在reader中
    header_row = next(reader)           # 第一行

    dates, highs = [], []               # 日期,最高温度初始化为空列表
    for row in reader:                  # 遍历每行
        current_date = datetime.strptime(row[0], "%Y-%m-%d")  # 每行第零个元素
        dates.append(current_date)      # 添加日期

        high = int(row[1])              # 最高温度转化为整型
        highs.append(high)              # 添加温度

# 根据数据绘制图像
fig = plt.figure(dpi=128, figsize=(10, 6))
plt.plot(dates, highs, c='red')

# 设置图形的格式
plt.title("Daily high temperatures - 2014", fontsize=24)      # 标题
plt.xlabel('', fontsize=16)                                   # x轴
fig.autofmt_xdate()                                           # 绘制斜的x轴标签
plt.ylabel("Temperature(F)", fontsize=16)                     # y轴
plt.tick_params(axis='both', which='major', labelsize=16)     # 刻度标记大小

plt.show()

在这里插入图片描述


例4:再绘制一个数据系列
这里多绘制了一个最低温度

import csv                              # 用于分析CSV文件中的数据行
from matplotlib import pyplot as plt    # 画图需要
from datetime import datetime           # 将字符串转换为对应日期需要

# 从文件中获取最高气温,最低温度和日期
filename = 'sitka_weather_2014.csv'
with open(filename) as f:               # 打开文件,并将结果文件对象存储在f中
    reader = csv.reader(f)              # 创建与该文件相关联的阅读器对象,并存储在reader中
    header_row = next(reader)           # 第一行

    dates, highs, lows = [], [], []     # 日期,最高温度初始化为空列表
    for row in reader:                  # 遍历每行
        current_date = datetime.strptime(row[0], "%Y-%m-%d")  # 每行第零个元素
        dates.append(current_date)      # 添加日期

        high = int(row[1])              # 最高温度转化为整型
        highs.append(high)              # 添加温度

        low = int(row[3])
        lows.append(low)

# 根据数据绘制图像
fig = plt.figure(dpi=128, figsize=(10, 6))
plt.plot(dates, highs, c='red')
plt.plot(dates, lows, c='blue')

# 设置图形的格式
plt.title("Daily high and low temperatures - 2014", fontsize=24)  # 标题
plt.xlabel('', fontsize=16)                                       # x轴
fig.autofmt_xdate()                                               # 绘制斜的x轴标签
plt.ylabel("Temperature(F)", fontsize=16)                         # y轴
plt.tick_params(axis='both', which='major', labelsize=16)         # 刻度标记大小

plt.show()

在这里插入图片描述


例5:给图表区域着色

import csv                              # 用于分析CSV文件中的数据行
from matplotlib import pyplot as plt    # 画图需要
from datetime import datetime           # 将字符串转换为对应日期需要

# 从文件中获取最高气温,最低温度和日期
filename = 'sitka_weather_2014.csv'
with open(filename) as f:               # 打开文件,并将结果文件对象存储在f中
    reader = csv.reader(f)              # 创建与该文件相关联的阅读器对象,并存储在reader中
    header_row = next(reader)           # 第一行

    dates, highs, lows = [], [], []     # 日期,最高温度初始化为空列表
    for row in reader:                  # 遍历每行
        current_date = datetime.strptime(row[0], "%Y-%m-%d")  # 每行第零个元素
        dates.append(current_date)      # 添加日期

        high = int(row[1])              # 最高温度转化为整型
        highs.append(high)              # 添加温度

        low = int(row[3])
        lows.append(low)

# 根据数据绘制图像
fig = plt.figure(dpi=128, figsize=(10, 6))
plt.plot(dates, highs, c='red', alpha=0.5)   # alpha指定颜色的透明度,使得红色和蓝色折线看起来更浅
plt.plot(dates, lows, c='blue', alpha=0.5)
plt.fill_between(dates, highs, lows, facecolor='blue', alpha=0.1)  # 两条线之间填充蓝色,透明度0.1

# 设置图形的格式
plt.title("Daily high and low temperatures - 2014", fontsize=24)  # 标题
plt.xlabel('', fontsize=16)                                       # x轴
fig.autofmt_xdate()                                               # 绘制斜的x轴标签
plt.ylabel("Temperature(F)", fontsize=16)                         # y轴
plt.tick_params(axis='both', which='major', labelsize=16)         # 刻度标记大小

plt.show()

在这里插入图片描述


例6:错误检查
有些文档可能数据不全,缺失数据可能引起异常
例如换这个文档
在这里插入图片描述
这个文档数据不全
在这里插入图片描述
这里就需要修改代码,如下:

import csv                              # 用于分析CSV文件中的数据行
from matplotlib import pyplot as plt    # 画图需要
from datetime import datetime           # 将字符串转换为对应日期需要

# 从文件中获取最高气温,最低温度和日期
filename = 'death_valley_2014.csv'
with open(filename) as f:               # 打开文件,并将结果文件对象存储在f中
    reader = csv.reader(f)              # 创建与该文件相关联的阅读器对象,并存储在reader中
    header_row = next(reader)           # 第一行

    dates, highs, lows = [], [], []     # 日期,最高温度初始化为空列表
    for row in reader:                  # 遍历每行
        try:
            current_date = datetime.strptime(row[0], "%Y-%m-%d")  # 每行第零个元素
            high = int(row[1])  # 最高温度转化为整型
            low = int(row[3])
        except ValueError:
            print(current_date, 'missing data')
        else:
            dates.append(current_date)      # 添加日期
            highs.append(high)              # 添加温度
            lows.append(low)

# 根据数据绘制图像
fig = plt.figure(dpi=128, figsize=(10, 6))
plt.plot(dates, highs, c='red', alpha=0.5)   # alpha指定颜色的透明度,使得红色和蓝色折线看起来更浅
plt.plot(dates, lows, c='blue', alpha=0.5)
plt.fill_between(dates, highs, lows, facecolor='blue', alpha=0.1)  # 两条线之间填充蓝色,透明度0.1

# 设置图形的格式
title = 'Daily high and low temperatures - 2014\nDeath Valley, CA'
plt.title(title, fontsize=20)  # 标题
plt.xlabel('', fontsize=16)                                       # x轴
fig.autofmt_xdate()                                               # 绘制斜的x轴标签
plt.ylabel("Temperature(F)", fontsize=16)                         # y轴
plt.tick_params(axis='both', which='major', labelsize=16)         # 刻度标记大小

plt.show()

在这里插入图片描述
在这里插入图片描述


15.2 json文件

例:存

import json

numbers = [1, 3, 5, 7, 9]

filename = "numbers.json"
with open(filename, 'w') as f_obj:
    json.dump(numbers, f_obj)

例:取

import json

filename = "numbers.json"
with open(filename) as f_obj:
    numbers = json.load(f_obj)

print(numbers)
[1, 3, 5, 7, 9]

例1:从数据地址下载json文件,这里从GitHub上下载

from __future__ import (absolute_import, division, print_function, unicode_literals)
from urllib.request import urlopen
import json

# 网址:the url
json_url = 'https://raw.githubusercontent.com/muxuezi/btc/master/btc_close_2017.json'
response = urlopen(json_url)
req = response.read()                                # 读取数据
with open('btc_close_2017_urllib.json', 'wb') as f:  # 将数据写入文件
    f.write(req)
file_urllib = json.loads(req)                        # 加载json格式
print(file_urllib)

下载得到的数据:
在这里插入图片描述
例2:第二种下载方法requests

import requests

# 网址:the url
json_url = 'https://raw.githubusercontent.com/muxuezi/btc/master/btc_close_2017.json'
req = requests.get(json_url)                           # 读取数据
with open('btc_close_2017_urllib.json', 'w') as f:     # 将数据写入文件
    f.write(req.text)
file_requests = req.json()

例3:从下载得到的文件中提取数据

import json

"""文件中的数据是多个字典,字典都包含相同的键,对应不同的值,这里遍历所有字典,输出每个字典里键对应的值"""
# 将数据加载到一个列表中
filename = 'btc_close_2017_urllib.json'  # 文件
with open(filename) as f:                # 打开文件
    btc_data = json.load(f)              # 加载文件
# 打印每一天的信息
for btc_dict in btc_data:                # 遍历字典
    date = btc_dict['date']              # 每个字典中都有,日期
    month = btc_dict['month']            # 月份
    week = btc_dict['week']              # 周
    weekday = btc_dict['weekday']        # 周末
    close = btc_dict['close']            # 收盘价
    print("{} 是 {} 月, 第 {} 周, 星期{}, 收盘价是 {} RMB".format(date, month, week, weekday, close))

数据太多,部分如下
在这里插入图片描述

例4:收盘价

import json
import pygal

"""文件中的数据是多个字典,字典都包含相同的键,对应不同的值,这里遍历所有字典,输出每个字典里键对应的值"""
# 将数据加载到一个列表中
filename = 'btc_close_2017_urllib.json'  # 文件
with open(filename) as f:                # 打开文件
    btc_data = json.load(f)              # 加载文件
# 打印每一天的信息
for btc_dict in btc_data:                # 遍历字典
    date = btc_dict['date']              # 每个字典中都有,日期
    month = int(btc_dict['month'])            # 月份
    week = int(btc_dict['week'])              # 周
    weekday = btc_dict['weekday']             # 周末
    close = int(float(btc_dict['close']))     # 收盘价
    print("{} 是 {} 月, 第 {} 周, 星期{}, 收盘价是 {} RMB".format(date, month, week, weekday, close))

# 创建5个列表,分别存储日期和收盘价
dates = []
months = []
weeks = []
weekdays = []
close = []
# 每一天的信息
for btc_dict in btc_data:
    dates.append(btc_dict['date'])
    months.append(int(btc_dict['month']))
    weeks.append(int(btc_dict['week']))
    weekdays.append(btc_dict['weekday'])
    close.append(int(float(btc_dict['close'])))

line_chart = pygal.Line(x_label_rotation=20, show_minoe_x_labels=False)
line_chart.title = '收盘价($)'
line_chart.x_labels = dates
N = 20   # x轴坐标每隔20天显示一次
line_chart.x_labels_major = dates[::N]
line_chart.add('收盘价', close)
line_chart.render_to_file('收盘价折线图($).svg')

在这里插入图片描述
例5:收盘价对数变换折线图

import json
import pygal
import math
from itertools import groupby

"""文件中的数据是多个字典,字典都包含相同的键,对应不同的值,这里遍历所有字典,输出每个字典里键对应的值"""
# 将数据加载到一个列表中
filename = 'btc_close_2017_urllib.json'  # 文件
with open(filename) as f:                # 打开文件
    btc_data = json.load(f)              # 加载文件
# 打印每一天的信息
for btc_dict in btc_data:                # 遍历字典
    date = btc_dict['date']              # 每个字典中都有,日期
    month = int(btc_dict['month'])            # 月份
    week = int(btc_dict['week'])              # 周
    weekday = btc_dict['weekday']             # 周末
    close = int(float(btc_dict['close']))     # 收盘价
    print("{} 是 {} 月, 第 {} 周, 星期{}, 收盘价是 {} RMB".format(date, month, week, weekday, close))

# 创建5个列表,分别存储日期和收盘价
dates = []
months = []
weeks = []
weekdays = []
close = []
# 每一天的信息
for btc_dict in btc_data:
    dates.append(btc_dict['date'])
    months.append(int(btc_dict['month']))
    weeks.append(int(btc_dict['week']))
    weekdays.append(btc_dict['weekday'])
    close.append(int(float(btc_dict['close'])))

"""收盘价折线图"""
line_chart = pygal.Line(x_label_rotation=20, show_minoe_x_labels=False)
line_chart.title = '收盘价($)'
line_chart.x_labels = dates
N = 20   # x轴坐标每隔20天显示一次
line_chart.x_labels_major = dates[::N]
line_chart.add('收盘价', close)
line_chart.render_to_file('收盘价折线图($).svg')

"""收盘价对数变换折线图"""
line_chart = pygal.Line(x_label_rotation=20, show_minoe_x_labels=False)
line_chart.title = '收盘价对数变换($)'
line_chart.x_labels = dates
N = 20   # x轴坐标每隔20天显示一次
line_chart.x_labels_major = dates[::N]
close_log = [math.log10(_) for _ in close]    # 这里不一样
line_chart.add('log收盘价', close_log)
line_chart.render_to_file('收盘价对数变换折线图($).svg')

在这里插入图片描述
例6:收盘价周日均值和收盘价星期均值

import json
import pygal
import math
from itertools import groupby

"""文件中的数据是多个字典,字典都包含相同的键,对应不同的值,这里遍历所有字典,输出每个字典里键对应的值"""
# 将数据加载到一个列表中
filename = 'btc_close_2017_urllib.json'  # 文件
with open(filename) as f:                # 打开文件
    btc_data = json.load(f)              # 加载文件
# 打印每一天的信息
for btc_dict in btc_data:                # 遍历字典
    date = btc_dict['date']              # 每个字典中都有,日期
    month = int(btc_dict['month'])            # 月份
    week = int(btc_dict['week'])              # 周
    weekday = btc_dict['weekday']             # 周末
    close = int(float(btc_dict['close']))     # 收盘价
    print("{} 是 {} 月, 第 {} 周, 星期{}, 收盘价是 {} RMB".format(date, month, week, weekday, close))

# 创建5个列表,分别存储日期和收盘价
dates = []
months = []
weeks = []
weekdays = []
close = []
# 每一天的信息
for btc_dict in btc_data:
    dates.append(btc_dict['date'])
    months.append(int(btc_dict['month']))
    weeks.append(int(btc_dict['week']))
    weekdays.append(btc_dict['weekday'])
    close.append(int(float(btc_dict['close'])))

"""收盘价折线图"""
line_chart = pygal.Line(x_label_rotation=20, show_minoe_x_labels=False)
line_chart.title = '收盘价($)'
line_chart.x_labels = dates
N = 20   # x轴坐标每隔20天显示一次
line_chart.x_labels_major = dates[::N]
line_chart.add('收盘价', close)
line_chart.render_to_file('收盘价折线图($).svg')

"""收盘价对数变换折线图"""
line_chart = pygal.Line(x_label_rotation=20, show_minoe_x_labels=False)
line_chart.title = '收盘价对数变换($)'
line_chart.x_labels = dates
N = 20   # x轴坐标每隔20天显示一次
line_chart.x_labels_major = dates[::N]
close_log = [math.log10(_) for _ in close]
line_chart.add('log收盘价', close_log)
line_chart.render_to_file('收盘价对数变换折线图($).svg')


def draw_line(x_data, y_data, title, y_legend):
    xy_map = []
    for x, y in groupby(sorted(zip(x_data, y_data)), key=lambda _: _[0]):
        y_list = [v for _, v in y]
        xy_map.append([x, sum(y_list) / len(y_list)])
    x_unique, y_mean = [*zip(*xy_map)]
    line_chart = pygal.Line()           # 画图
    line_chart.title = title            # 设置标题
    line_chart.x_labels = x_unique
    line_chart.add(y_legend, y_mean)    # 添加了Y轴标签
    line_chart.render_to_file(title+'.svg')  # 保存为.svg文件
    return line_chart


idx_month = dates.index('2017-12-01')
line_chart_month = draw_line(months[:idx_month], close[:idx_month],
                             '收盘价月日均值($)', '月日均值')
line_chart_month

inx_week = dates.index('2017-12-01')
line_chart_week = draw_line(weeks[:idx_month], close[1:idx_month],
                            '收盘价周日均值($)', '周日均值')
line_chart_week


idx_week = dates.index('2017-12-11')
wd = ['Monday', 'Tuesday', 'Wednesday',
      'Thursday', 'Friday', 'Saturday', 'Sunday']
weekdays_int = [wd.index(w) + 1 for w in weekdays[1:idx_week]]
line_chart_weekday = draw_line(
    weekdays_int, close[1:idx_week], '收盘价星期均值($)', '星期均值')
line_chart_weekday.x_labels = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
line_chart_weekday.render_to_file('收盘价星期均值($).svg')
line_chart_weekday

这里图就不贴了

最后:收盘价数据仪表盘

import json
import pygal
import math
from itertools import groupby

"""文件中的数据是多个字典,字典都包含相同的键,对应不同的值,这里遍历所有字典,输出每个字典里键对应的值"""
# 将数据加载到一个列表中
filename = 'btc_close_2017_urllib.json'  # 文件
with open(filename) as f:                # 打开文件
    btc_data = json.load(f)              # 加载文件
# 打印每一天的信息
for btc_dict in btc_data:                # 遍历字典
    date = btc_dict['date']              # 每个字典中都有,日期
    month = int(btc_dict['month'])            # 月份
    week = int(btc_dict['week'])              # 周
    weekday = btc_dict['weekday']             # 周末
    close = int(float(btc_dict['close']))     # 收盘价
    print("{} 是 {} 月, 第 {} 周, 星期{}, 收盘价是 {} RMB".format(date, month, week, weekday, close))

# 创建5个列表,分别存储日期和收盘价
dates = []
months = []
weeks = []
weekdays = []
close = []
# 每一天的信息
for btc_dict in btc_data:
    dates.append(btc_dict['date'])
    months.append(int(btc_dict['month']))
    weeks.append(int(btc_dict['week']))
    weekdays.append(btc_dict['weekday'])
    close.append(int(float(btc_dict['close'])))


"""收盘价折线图"""
line_chart = pygal.Line(x_label_rotation=20, show_minoe_x_labels=False)
line_chart.title = '收盘价($)'
line_chart.x_labels = dates
N = 20   # x轴坐标每隔20天显示一次
line_chart.x_labels_major = dates[::N]
line_chart.add('收盘价', close)
line_chart.render_to_file('收盘价折线图($).svg')

"""收盘价对数变换折线图"""
line_chart = pygal.Line(x_label_rotation=20, show_minoe_x_labels=False)
line_chart.title = '收盘价对数变换($)'
line_chart.x_labels = dates
N = 20   # x轴坐标每隔20天显示一次
line_chart.x_labels_major = dates[::N]
close_log = [math.log10(_) for _ in close]
line_chart.add('log收盘价', close_log)
line_chart.render_to_file('收盘价对数变换折线图($).svg')


def draw_line(x_data, y_data, title, y_legend):
    xy_map = []
    for x, y in groupby(sorted(zip(x_data, y_data)), key=lambda _: _[0]):
        y_list = [v for _, v in y]
        xy_map.append([x, sum(y_list) / len(y_list)])
    x_unique, y_mean = [*zip(*xy_map)]
    line_chart = pygal.Line()           # 画图
    line_chart.title = title            # 设置标题
    line_chart.x_labels = x_unique
    line_chart.add(y_legend, y_mean)    # 添加了Y轴标签
    line_chart.render_to_file(title+'.svg')  # 保存为.svg文件
    return line_chart


idx_month = dates.index('2017-12-01')
line_chart_month = draw_line(months[:idx_month], close[:idx_month],
                             '收盘价月日均值($)', '月日均值')
line_chart_month

inx_week = dates.index('2017-12-01')
line_chart_week = draw_line(weeks[:idx_month], close[1:idx_month],
                            '收盘价周日均值($)', '周日均值')
line_chart_week


idx_week = dates.index('2017-12-11')
wd = ['Monday', 'Tuesday', 'Wednesday',
      'Thursday', 'Friday', 'Saturday', 'Sunday']
weekdays_int = [wd.index(w) + 1 for w in weekdays[1:idx_week]]
line_chart_weekday = draw_line(
    weekdays_int, close[1:idx_week], '收盘价星期均值($)', '星期均值')
line_chart_weekday.x_labels = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
line_chart_weekday.render_to_file('收盘价星期均值($).svg')
line_chart_weekday

with open('收盘价Dashboard.html', 'w', encoding='utf8') as html_file:
    html_file.write(
        '<html><head><title>收盘价Dashboard</title><meta charset="utf-8"></head><body>\n')
    for svg in [
            '收盘价折线图($).svg', '收盘价对数变换折线图($).svg', '收盘价月日均值($).svg',
            '收盘价周日均值($).svg', '收盘价星期均值($).svg'
    ]:
        html_file.write(
            '    <object type="image/svg+xml" data="{0}" height=500></object>\n'.format(svg))  # 1
    html_file.write('</body></html>')

相当于把上面得到的五张图放在一个HTML文件中
在这里插入图片描述