1.算法原理
Fisherfaces算法的核心思想是利用LDA算法对人脸特征进行降维,并通过计算投影系数,将原始图像投影到低维空间中。这样不仅可以大大减少计算量,提高识别速度,还能在一定程度上保持较高的识别准确率。LDA是一种经典的线性学习方法,它能够在降维的同时考虑类别信息,使得投影后的同类样本点尽可能靠近,异类样本点尽可能远离。
2.算法特点
- 考虑类别信息:与Eigenfaces算法相比,Fisherfaces算法在降维过程中考虑了类别信息,这使得投影后的特征更具区分性。
- 对光照和角度变化具有鲁棒性:由于Fisherfaces算法在提取特征时考虑了人脸的几何形状和纹理信息,因此它对光照和角度变化具有一定的鲁棒性。
- 计算复杂度较高:虽然Fisherfaces算法在识别阶段具有较快的速度,但由于在训练阶段需要计算类内和类间散度矩阵以及投影系数,因此计算复杂度相对较高。
3.代码实现
import cv2
import numpy as np
def image_re(imgae):
a = cv2.imread(imgae, 0)
a = cv2.resize(a, (120, 180))
return a
image = []
a = image_re('fmjj1.png')
b = image_re('fmjj2.png')
c = image_re('ss1.png')
d = image_re('ss2.png')
image.append(a)
image.append(b)
image.append(c)
image.append(d)
labels = [0, 0, 1, 1]
pre_image = image_re('fmjj.png')
recognizer = cv2.face.FisherFaceRecognizer_create()
recognizer.train(image, np.array(labels))
label, confidence = recognizer.predict(pre_image)
dic = {0: 'fmjj', 1: 'ss'}
print("这人是:", dic[label])
print('置信度:', confidence)
aa = cv2.putText(cv2.imread('fmjj.png').copy(), dic[label], (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
cv2.imshow('aa', aa)
cv2.waitKey(0)
cv2.destroyAllWindows()