在深度学习中,有两个重要的公式常用于模型训练和评估
1.损失函数(Loss Function)
对于分类问题,常用的交叉熵损失函数(Cross-Entropy Loss) 定义为
L ( y , y ^ ) = − ∑ i = 1 C y i log ( y ^ i ) L(y,\hat{y})=-\sum_{i=1}^Cy_i\log(\hat{y}_i) L(y,y^)=−i=1∑Cyilog(y^i)
其中:
·
L
L
L是损失值。
·
y
y
y是真实标签的独热编码 (one-hot encoding) .
·
y
^
\hat{y}
y^是模型预测的概率分布。
·
C
C
C是类别数。
2.激活函数(Activation Function)
ReLU (Rectified Linear Unit) 激活函数的定义为:
f ( x ) = max ( 0 , x ) f(x)=\max(0,x) f(x)=max(0,x)
其中:
- $ f(x)$是激活值。
- x x x是输入值。
这两个公式在神经网络的训练过程中扮演着重要角色,帮助模型学习和做出预测。