java实现的无头单向非循环链表
- ArrayList的缺陷
- 链表
- 链表的概念及结构
- 无头单向非循环链表的实现
- 链表OJ题
ArrayList的缺陷
由于ArrayList底层是一段连续空间,当在ArrayList任意位置插入或者删除元素时,就需要将后序元素整体往前或者往后搬移,时间复杂度为O(N),效率比较低,因此ArrayList不适合做任意位置插入和删除比较多的场景,因此java集合中又引入了LinkedList,即链表结构。
链表
链表的概念及结构
链表是一种物理存储结构上非连续的存储结构,数据元素的逻辑顺序是通过链表中的引用链接次序实现的。
链式结构在逻辑上是连续的,但是在物理上不一定连续,现实中的结点一般是从堆上申请出来的,从堆上申请的空间,是按照一定的策略来分配的,两次申请的空间可能连续,也可能不连续
实际中链表的结构非常多样,以下情况组合起来就有8种链表结构:
-
单向或者双向
-
带头或者不带头
-
循环或者非循环
所以有八种链表结构
单向带头循环链表,双向带头循环链表
单向不带头循环链表,双向不带头循环链表
单向带头非循环链表,双向带头非循环链表
单向不带头非循环链表,双向不带头非循环链表
虽然有这么多的链表的结构,重点需要我们掌握两种:
- 无头单向非循环链表:结构简单,一般不会单独用来存数据,实际中更多是作为其他数据结构的子结构,如哈希,图的邻接表等等
- 无头双向链表:在java的集合框架中LinkedList底层实现就是无头双向循环链表。
无头单向非循环链表的实现
public interface IList {
//头插法
public void addFirst(int data);
//尾插法
public void addLast(int data);
//任意位置插入,第一个数据节点为0号下标
public void addIndex(int index,int data);
//查找是否包含关键字key是否在单链表当中
public boolean contains(int key);
//删除第一次出现关键字为key的节点
public void remove(int key);
//删除所有值为key的节点
public void removeAllKey(int key);
//得到单链表的长度
public int size();
public void clear();
public void display();
}
public class MySingleList implements IList{
//静态内部类创建节点
static class LinkNode{
public int value;
public LinkNode next;
public LinkNode(int value) {
this.value = value;
}
}
public LinkNode head;
@Override
public void addFirst(int data) {
}
@Override
public void addLast(int data) {
}
@Override
public void addIndex(int index, int data) {
}
@Override
public boolean contains(int key) {
return false;
}
@Override
public void remove(int key) {
}
@Override
public void removeAllKey(int key) {
}
@Override
public int size() {
return 0;
}
@Override
public void clear() {
}
@Override
public void display() {
}
}
我们先从打印链表开始,如果我们使用head引用来遍历打印,直到遇到null,到最后head到了null,我们就找不到头节点了,所以我们可以另外使用一个cur引用来遍历。
@Override
public void display() {
LinkNode cur = this.head;
while(cur != null){
System.out.print(cur.value + " ");
cur = cur.next;
}
System.out.println();
}
我们可以通过自己手动创建链表,来测试我们的打印链表方法
public void createSingleLink(){
LinkNode node0 = new LinkNode(12);
LinkNode node1 = new LinkNode(23);
LinkNode node2 = new LinkNode(34);
LinkNode node3 = new LinkNode(45);
LinkNode node4 = new LinkNode(56);
this.head = node0;
node0.next = node1;
node1.next = node2;
node2.next = node3;
node3.next = node4;
node4.next = null;
}
public class Test {
public static void main(String[] args) {
MySingleList list = new MySingleList();
list.createSingleLink();
list.display();
}
//结果为:12 23 34 45 56
}
接下来实现size()求链表节点个数,依然通过一个cur来遍历并计数。
@Override
public int size() {
int count = 0;
LinkNode cur = this.head;
while(cur != null){
count++;
cur = cur.next;
}
return count;
}
public class Test {
public static void main(String[] args) {
MySingleList list = new MySingleList();
list.createSingleLink();
System.out.println(list.size());
}
//结果为:5
}
接下来实现查找是否包含关键字key是否在单链表当中的方法,我们依然通过遍历找到该key,返回true,找不到返回false
@Override
public boolean contains(int key) {
LinkNode cur = this.head;
while(cur != null){
if(cur.value == key){
return true;
}
cur = cur.next;
}
return false;
}
public class Test {
public static void main(String[] args) {
MySingleList list = new MySingleList();
list.createSingleLink();
//12 23 34 45 56
System.out.println(list.contains(12));
System.out.println(list.contains(34));
System.out.println(list.contains(56));
System.out.println(list.contains(100));
}
//结果为:true
//true
//true
//false
}
接下来实现头插法,也就是在链表头部插入节点
@Override
public void addFirst(int data) {
LinkNode newNode = new LinkNode(data);
newNode.next = this.head;
this.head = newNode;
}
public class Test {
public static void main(String[] args) {
MySingleList list1 = new MySingleList();
list1.createSingleLink();
list1.addFirst(99);
list1.display();
MySingleList list = new MySingleList();
list.addFirst(56);
list.addFirst(45);
list.addFirst(34);
list.addFirst(23);
list.addFirst(12);
list.addFirst(99);
list.display();
}
//结果为:
//99 12 23 34 45 56
//99 12 23 34 45 56
}
接下来实现尾插法,我们需要先找到尾节点,再进行插入,还有我们还要考虑到如果链表为空时,代码是否能执行,是否需要我们再对其另外的实现
@Override
public void addLast(int data) {
LinkNode newNode = new LinkNode(data);
//如果链表为空
if(this.head == null){
this.head = newNode; //直接将head指向新结点
return;
}
//链表非空
//首先找到尾结点
LinkNode cur = this.head;
while(cur.next != null){ //当cur走到尾结点,cur.next == null退出循环,cur指向尾结点
cur = cur.next;
}
cur.next = newNode;
}
public class Test {
public static void main(String[] args) {
MySingleList list = new MySingleList();
list.addLast(12);
list.addLast(23);
list.addLast(34);
list.addLast(45);
list.addLast(56);
list.addLast(99);
list.display();
}
//结果为:
//12 23 34 45 56 99
}
接下来实现任意位置插入的方法,第一个数据节点为0号下标,任意位置插入涉及尾插,头插,还有中间插入,中间插入需要修改前后指向,所以需要找到插入位置的前一个,就可以实现互相绑定,而且绑定有一个规律:所有的绑定,优先绑定后面。如果优先绑定前面,可能会出现问题,例如该方法。还有我们要考虑到任意位置,是所有位置吗,我们还需要对index进行检查,不能小于0,也不能大于size();
如果先绑定前面会出现什么问题呢?
public class IndexIllegal extends RuntimeException{
public IndexIllegal() {
}
public IndexIllegal(String message) {
super(message);
}
}
private void checkIndex(int index) throws IndexIllegal{
if(index < 0 || index > size()){
throw new IndexIllegal("插入位置不合法");
}
}
@Override
public void addIndex(int index, int data) {
try{
checkIndex(index);
int len = size(); //用一个变量存储就不用一直调用方法
if(index == 0){
addFirst(data);
return;
}
if(index == len){
addLast(data);
return;
}
LinkNode newNode = new LinkNode(data);
LinkNode cur = this.head;
while(index - 1 != 0){
cur = cur.next;
index--;
}
newNode.next = cur.next;
cur.next = newNode;
}catch(IndexIllegal e){
e.printStackTrace();
}
}
public class Test {
public static void main(String[] args) {
MySingleList list = new MySingleList();
list.addLast(12);
list.addLast(23);
list.addLast(34);
list.addLast(45);
list.addLast(56);
list.display();
list.addIndex(0,11);
list.display();
list.addIndex(6,66);
list.display();
list.addIndex(3,33);
list.display();
//list.addIndex(100,77);
}
//结果为:
//12 23 34 45 56
//11 12 23 34 45 56
//11 12 23 34 45 56 66
//11 12 23 33 34 45 56 66
}
接下来实现删除第一次出现关键字为key的节点的方法
@Override
public void remove(int key) {
if(this.head == null){
return;
}
if(this.head.value == key){
this.head = this.head.next;
return;
}
LinkNode cur = this.head;
while(cur.next != null){
if(cur.next.value == key){
LinkNode del = cur.next;
cur.next = del.next; //也可以写成 cur.next = cur.next.next;
return;
}
cur = cur.next;
}
}
public class Test {
public static void main(String[] args) {
MySingleList list = new MySingleList();
list.addLast(12);
list.addLast(23);
list.addLast(34);
list.addLast(45);
list.addLast(56);
list.display();
list.remove(12);
list.display();
list.remove(56);
list.display();
list.remove(34);
list.display();
}
//结果为:
//12 23 34 45 56
//23 34 45 56
//23 34 45
//23 45
}
接下来实现删除所有值为key的节点的方法
@Override
public void removeAllKey(int key) {
//如果链表为空,不能删
if(this.head == null){
return;
}
LinkNode prev = this.head;
LinkNode cur = this.head.next;
while(cur != null){
if(cur.value == key){
prev.next = cur.next;
cur = cur.next;
}else{
prev = cur;
cur = cur.next;
}
}
if(this.head.value == key){
this.head = this.head.next;
}
}
public class Test {
public static void main(String[] args) {
MySingleList list = new MySingleList();
list.addLast(23);
list.addLast(23);
list.addLast(34);
list.addLast(23);
list.addLast(56);
list.display();
list.removeAllKey(<