一、PyTorch批训练
1. 概述
PyTorch提供了一种将数据包装起来进行批训练的工具——DataLoader。使用的时候,只需要将我们的数据首先转换为torch的tensor形式,再转换成torch可以识别的Dataset格式,然后将Dataset放入DataLoader中就可以啦。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
import torch
import torch.utils.data as Data
torch.manual_seed( 1 ) # 设定随机数种子
BATCH_SIZE = 5
x = torch.linspace( 1 , 10 , 10 )
y = torch.linspace( 0.5 , 5 , 10 )
# 将数据转换为torch的dataset格式
torch_dataset = Data.TensorDataset(data_tensor = x, target_tensor = y)
# 将torch_dataset置入Dataloader中
loader = Data.DataLoader(
dataset = torch_dataset,
batch_size = BATCH_SIZE, # 批大小
# 若dataset中的样本数不能被batch_size整除的话,最后剩余多少就使用多少
shuffle = True , # 是否随机打乱顺序
num_workers = 2 , # 多线程读取数据的线程数
)
for epoch in range ( 3 ):
for step, (batch_x, batch_y) in enumerate (loader):
print ( 'Epoch:' , epoch, '|Step:' , step, '|batch_x:' ,
batch_x.numpy(), '|batch_y' , batch_y.numpy())
'''''
shuffle=True
Epoch: 0 |Step: 0 |batch_x: [ 6. 7. 2. 3. 1.] |batch_y [ 3. 3.5 1. 1.5 0.5]
Epoch: 0 |Step: 1 |batch_x: [ 9. 10. 4. 8. 5.] |batch_y [ 4.5 5. 2. 4. 2.5]
Epoch: 1 |Step: 0 |batch_x: [ 3. 4. 2. 9. 10.] |batch_y [ 1.5 2. 1. 4.5 5. ]
Epoch: 1 |Step: 1 |batch_x: [ 1. 7. 8. 5. 6.] |batch_y [ 0.5 3.5 4. 2.5 3. ]
Epoch: 2 |Step: 0 |batch_x: [ 3. 9. 2. 6. 7.] |batch_y [ 1.5 4.5 1. 3. 3.5]
Epoch: 2 |Step: 1 |batch_x: [ 10. 4. 8. 1. 5.] |batch_y [ 5. 2. 4. 0.5 2.5]
shuffle=False
Epoch: 0 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1. 1.5 2. 2.5]
Epoch: 0 |Step: 1 |batch_x: [ 6. 7. 8. 9. 10.] |batch_y [ 3. 3.5 4. 4.5 5. ]
Epoch: 1 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1. 1.5 2. 2.5]
Epoch: 1 |Step: 1 |batch_x: [ 6. 7. 8. 9. 10.] |batch_y [ 3. 3.5 4. 4.5 5. ]
Epoch: 2 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1. 1.5 2. 2.5]
Epoch: 2 |Step: 1 |batch_x: [ 6. 7. 8. 9. 10.] |batch_y [ 3. 3.5 4. 4.5 5. ]
'''
|
2. TensorDataset
1
|
classtorch.utils.data.TensorDataset(data_tensor, target_tensor)
|
TensorDataset类用来将样本及其标签打包成torch的Dataset,data_tensor,和target_tensor都是tensor。
3. DataLoader
dataset就是Torch的Dataset格式的对象;batch_size即每批训练的样本数量,默认为;shuffle表示是否需要随机取样本;num_workers表示读取样本的线程数。
二、PyTorch的Optimizer优化器
本实验中,首先构造一组数据集,转换格式并置于DataLoader中,备用。定义一个固定结构的默认神经网络,然后为每个优化器构建一个神经网络,每个神经网络的区别仅仅是优化器不同。通过记录训练过程中的loss值,最后在图像上呈现得到各个优化器的优化过程。
代码实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
import torch
import torch.utils.data as Data
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
torch.manual_seed( 1 ) # 设定随机数种子
# 定义超参数
LR = 0.01 # 学习率
BATCH_SIZE = 32 # 批大小
EPOCH = 12 # 迭代次数
x = torch.unsqueeze(torch.linspace( - 1 , 1 , 1000 ), dim = 1 )
y = x. pow ( 2 ) + 0.1 * torch.normal(torch.zeros( * x.size()))
#plt.scatter(x.numpy(), y.numpy())
#plt.show()
# 将数据转换为torch的dataset格式
torch_dataset = Data.TensorDataset(data_tensor = x, target_tensor = y)
# 将torch_dataset置入Dataloader中
loader = Data.DataLoader(dataset = torch_dataset, batch_size = BATCH_SIZE,
shuffle = True , num_workers = 2 )
class Net(torch.nn.Module):
def __init__( self ):
super (Net, self ).__init__()
self .hidden = torch.nn.Linear( 1 , 20 )
self .predict = torch.nn.Linear( 20 , 1 )
def forward( self , x):
x = F.relu( self .hidden(x))
x = self .predict(x)
return x
# 为每个优化器创建一个Net
net_SGD = Net()
net_Momentum = Net()
net_RMSprop = Net()
net_Adam = Net()
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]
# 初始化优化器
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr = LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr = LR, momentum = 0.8 )
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr = LR, alpha = 0.9 )
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr = LR, betas = ( 0.9 , 0.99 ))
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]
# 定义损失函数
loss_function = torch.nn.MSELoss()
losses_history = [[], [], [], []] # 记录training时不同神经网络的loss值
for epoch in range (EPOCH):
print ( 'Epoch:' , epoch + 1 , 'Training...' )
for step, (batch_x, batch_y) in enumerate (loader):
b_x = Variable(batch_x)
b_y = Variable(batch_y)
for net, opt, l_his in zip (nets, optimizers, losses_history):
output = net(b_x)
loss = loss_function(output, b_y)
opt.zero_grad()
loss.backward()
opt.step()
l_his.append(loss.data[ 0 ])
labels = [ 'SGD' , 'Momentum' , 'RMSprop' , 'Adam' ]
for i, l_his in enumerate (losses_history):
plt.plot(l_his, label = labels[i])
plt.legend(loc = 'best' )
plt.xlabel( 'Steps' )
plt.ylabel( 'Loss' )
plt.ylim(( 0 , 0.2 ))
plt.show()
|
实验结果:
由实验结果可见,SGD的优化效果是最差的,速度很慢;作为SGD的改良版本,Momentum表现就好许多;相比RMSprop和Adam的优化速度就非常好。实验中,针对不同的优化问题,比较各个优化器的效果再来决定使用哪个。
三、其他补充
1. Python的zip函数
zip函数接受任意多个(包括0个和1个)序列作为参数,返回一个tuple列表。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
x = [ 1 , 2 , 3 ]
y = [ 4 , 5 , 6 ]
z = [ 7 , 8 , 9 ]
xyz = zip (x, y, z)
print xyz
[( 1 , 4 , 7 ), ( 2 , 5 , 8 ), ( 3 , 6 , 9 )]
x = [ 1 , 2 , 3 ]
x = zip (x)
print x
[( 1 ,), ( 2 ,), ( 3 ,)]
x = [ 1 , 2 , 3 ]
y = [ 4 , 5 , 6 , 7 ]
xy = zip (x, y)
print xy
[( 1 , 4 ), ( 2 , 5 ), ( 3 , 6 )]
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/marsjhao/article/details/72055310