第十四周周报:Transformer for CV

时间:2024-09-29 20:05:29

目录

摘要

Abstract

一、Swin Transformer

1.1 输入

1.2 Patch Partition

1.3  Linear Embedding

1.4 Patch Merging

1.5 Swin Transformer Block

1.6 代码

二、MLP-Mixer

2.1 网络模型整体结构

2.2 Mixer Layer

2.3 MLP

总结


摘要

本篇博客介绍了采用类似于卷积核的移动窗口进行图像特征提取的Swin Transformer网络模型,详细学习了该模型每一个组成模块的网络结构和参数传递过程。博客第二章介绍了不使用卷积和自注意力模块的MLP-Mixer模型,阐述了在全使用全连接的情况下会拥有哪些优势。在每一章的最后都会附上复现的PyTorch代码。

Abstract

This blog introduces the Swin Transformer network model that uses a moving window similar to a convolutional kernel for image feature extraction, and provides a detailed study of the network structure and parameter transfer process of each component module in the model. Chapter 2 of the blog introduced the MLP Mixer model without using convolution and self attention modules, and explained the advantages it would have when fully connected. At the end of each chapter, a reproduced PyTorch code will be attached.

一、Swin Transformer

上一篇博客中ViT通过将图片打成patch传入Transformer之中,虽然简单直接,但也存在一些问题。ViT是按照语言模型的逻辑去处理图片,对所有patch都做了多头自注意力,但是图片可能不需要将所有信息都注意到,例如图片的左上角和右下角很难出现在同一特征中。这样就会导致一些多余的计算,浪费了资源。

于是Swin Transformer提出了类似CNN卷积核的Shifted Windows(移动窗口),以减少patch之间做自注意力的次数,达到节省时间的目的。

接下来我将参照Swin Transformer模型整体结构图来讲解该模型,网络结构图如下所示:

008c622333c7417db1b786a58faaf712.png

1.1 输入

以输入图像大小为 224x224 为例,将图像tensor 224x224x3 从1处传入模型作为开始。

1.2 Patch Partition

到达第2步Patch Partiton,因为是以Transformer为基础,如同ViT一样需要将图片打成patch传入模型。这里将图像大小 224x224 通过卷积核大小为 4x4,步伐为4的卷积将图像转换为 56x56 的大小,通道数从3变为3x4x4=48维。

1.3  Linear Embedding

接下来数据将传入Swin Transformer最重要的第3大部分,首先在第一个stage会经过全连接层,这里的通道数在论文中是设置好的,即C=96。如上图所示,56x56x48 的tensor经过Linear Embedding维度变化为56x56x96。

1.4 Patch Merging

这里先说一下Patch Merging,因为只要第一个stage先经过Linear Embedding,后3个stage都是Patch Merging。这里的Patch Merging类似于CNN中的池化,为了使窗口获得多尺度的特征,需要在每一个block之前进行下采样,这样在窗口大小不变的情况下图像变小、维度增加,可以获得更多的特征信息。如下图所示:

c5d1b89e995d4cb19eef58efc1d2ce37.png

论文中提到将图像下采样2倍,在Patch Merging中会隔一个点采样。细心的人这时会发现,我们图像的维度从 4x4x1 变为了 2x2x4,但是在模型中是从eq?%5Cfrac%7BH%7D%7B4%7D%5Ctimes%20%5Cfrac%7BW%7D%7B4%7D%5Ctimes%20C变为eq?%5Cfrac%7BH%7D%7B8%7D%5Ctimes%20%5Cfrac%7BW%7D%7B8%7D%5Ctimes%202C,即大小缩小一半,维度扩大2倍。但是在上图的操作中维度扩大了4倍,论文中为了使其与CNN中池化保持一致,在Patch Merging之后会在再通过一次卷积使维度缩小一半,以达到大小缩小一半,维度扩大2倍的效果。

到这一步Swin Transformer已经拥有了感知多尺度特征的手段。

1.5 Swin Transformer Block

50f0feac0e744c549c27db82282f5904.png

接下来看看Swin Transformer中最重要的模块,这里是用到了Transformer中的编码器,但是做了一些改动,Transformer中是单纯的多头自注意力(MSA),而这里用到了W-MSA和SW-MSA。

  • W-MSA

引入Windows Multi-head Self-Attention(窗口多头自注意力)就是为了解决开篇提到的计算量问题。W-MSA会将图像划分为 MxM (在论文中M默认为7)的不重叠窗口,然后多头自注意力只在同一个窗口内做,这样就从全局的自注意力变为了窗口内的自注意力,大大减小了计算量。

eq?O%28MSA%29%3D4hwC%5E%7B2%7D+2%28hw%29%5E%7B2%7DC

eq?O%28W-MSA%29%3D4hwC%5E%7B2%7D+2%28M%29%5E%7B2%7DhwC

如上公式,若图像长宽为 224x224 、M=7,则从eq?224%5E%7B4%7D降为eq?224%5E%7B2%7D%5Ctimes%2049,还是肉眼可见的降低不少。

  • SW-MSA 

如果只进行W-MSA会发现一个问题,窗口之间是没用通信的,也就是窗口与窗口之间是独立计算的,就不能像卷积一样移动去感受不同像素范围。于是,作者引入了Shifted Windows Multi-Head Self-Attention(SW-MSA)模块让窗口移动起来。

e642d53090e74ce5bf65faa2d1038f07.png

例如上图所示,将图像分为了4个窗口,在W-MSA中4个窗口分别做MSA;然后在下一层SW-MSA左上角的窗口会向右和向下移动eq?%5Cfrac%7BM%7D%7B2%7D个步伐。如右图所示将图像分割为9个窗口,会发现上一层不属于同一个窗口的patch,经过移动后融合为一个窗口,窗口与窗口之间成功进行了信息交流。

如果9个窗口分别进行SW-MSA,那么从上一层4个相同的窗口变为9个不完全相同的窗口进行计算,不但不利于并行计算,而且窗口数量也增大两倍多,通过W-MSA积攒的计算优势一去不复返。

那么该如何解决呢?有人想到padding补0,这样虽然可以保证窗口大小相同进行并行计算,但是数量是增多的。论文中,作者提出通过掩码的方式进行自注意力的计算。

2db0d401b34945bdb5a363b19461499e.png

A、B、C经过顺时针循环位移,将图像窗口补为大小相同的4个窗口。但是同一个窗口中,颜色不同的部分不能直接进行自注意力,需要在计算之后分别乘上对应的掩码。 

我的理解如下:

b6d803de2c2f49c8a1c8fdc8ec542800.png

掩码是加上一个很大的负值,在经过softmax之后该部分就会变为0。

1的部分全属于同一窗口可直接进行自注意力计算。

作者也对这部分进行详细的解释,另两个部分的掩码各不相同,但是都是按照上图逻辑计算,我就不一一展开,作者解释如下图所示:

ed3ec7d170234a698a525119d87f275d.png

在完成上述掩码计算之后,还需将循环移动的窗口还原

图像在经过最后一个stage之后大小变为 7x7x768,也就是图像全局特征。该模型在该层之后没有再连接其他操作,因为作者是想把该模型打造成一个万能的模块,可以将这些全局特征应用到各种下游任务。例如,将 7x7x768 送入全连接层输出 1x768,再将 1x768 升维至 1x1000 便可用作ImageNet数据集的分类操作。

在Swin Transformer block之中W-MSA和SW-MSA一般是成对使用,但具体的参数变化和窗口移动按具体任务而定,上述文章主要介绍核心内容。

1.6 代码

代码采用Swin Transformer tiny模型,训练利用迁移学习,模型预训练来自ImageNet-1K数据集,模型参数为1k,窗口大小为 7x7,Swin Transformer block分别为2、2、6、2。

Swin Transformer网络模型如下:

""" Swin Transformer
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`
    - https://arxiv.org/pdf/2103.14030

Code/weights from https://github.com/microsoft/Swin-Transformer

"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
import numpy as np
from typing import Optional


def drop_path_f(x, drop_prob: float = 0., training: bool = False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.

    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path_f(x, self.drop_prob, self.training)


def window_partition(x, window_size: int):
    """
    将feature map按照window_size划分成一个个没有重叠的window
    Args:
        x: (B, H, W, C)
        window_size (int): window size(M)

    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    # permute: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H//Mh, W//Mh, Mw, Mw, C]
    # view: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B*num_windows, Mh, Mw, C]
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows


def window_reverse(windows, window_size: int, H: int, W: int):
    """
    将一个个window还原成一个feature map
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size(M)
        H (int): Height of image
        W (int): Width of image

    Returns:
        x: (B, H, W, C)
    """
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    # view: [B*num_windows, Mh, Mw, C] -> [B, H//Mh, W//Mw, Mh, Mw, C]
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    # permute: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B, H//Mh, Mh, W//Mw, Mw, C]
    # view: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H, W, C]
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


class PatchEmbed(nn.Module):
    """
    2D Image to Patch Embedding
    """
    def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):
        super().__init__()
        patch_size = (patch_size, patch_size)
        self.patch_size = patch_size
        self.in_chans = in_c
        self.embed_dim = embed_dim
        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        _, _, H, W = x.shape

        # padding
        # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding
        pad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)
        if pad_input:
            # to pad the last 3 dimensions,
            # (W_left, W_right, H_top,H_bottom, C_front, C_back)
            x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],
                          0, self.patch_size[0] - H % self.patch_size[0],
                          0, 0))

        # 下采样patch_size倍
        x = self.proj(x)
        _, _, H, W = x.shape
        # flatten: [B, C, H, W] -> [B, C, HW]
        # transpose: [B, C, HW] -> [B, HW, C]
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x, H, W


class PatchMerging(nn.Module):
    r""" Patch Merging Layer.

    Args:
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x, H, W):
        """
        x: B, H*W, C
        """
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        x = x.view(B, H, W, C)

        # padding
        # 如果输入feature map的H,W不是2的整数倍,需要进行padding
        pad_input = (H % 2 == 1) or (W % 2 == 1)
        if pad_input:
            # to pad the last 3 dimensions, starting from the last dimension and moving forward.
            # (C_front, C_back, W_left, W_right, H_top, H_bottom)
            # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同
            x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))

        x0 = x[:, 0::2, 0::2, :]  # [B, H/2, W/2, C]
        x1 = x[:, 1::2, 0::2, :]  # [B, H/2, W/2, C]
        x2 = x[:, 0::2, 1::2, :]  # [B, H/2, W/2, C]
        x3 = x[:, 1::2, 1::2, :]  # [B, H/2, W/2, C]
        x = torch.cat([x0, x1, x2, x3], -1)  # [B, H/2, W/2, 4*C]
        x = x.view(B, -1, 4 * C)  # [B, H/2*W/2, 4*C]

        x = self.norm(x)
        x = self.reduction(x)  # [B, H/2*W/2, 2*C]

        return x


class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features

        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop)
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop2 = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x


class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # [Mh, Mw]
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # [2*Mh-1 * 2*Mw-1, nH]

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing="ij"))  # [2, Mh, Mw]
        coords_flatten = torch.flatten(coords, 1)  # [2, Mh*Mw]
        # [2, Mh*Mw, 1] - [2, 1, Mh*Mw]
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # [2, Mh*Mw, Mh*Mw]
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # [Mh*Mw, Mh*Mw, 2]
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # [Mh*Mw, Mh*Mw]
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask: Optional[torch.Tensor] = None):
        """
        Args:
            x: input features with shape of (num_windows*B, Mh*Mw, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        # [batch_size*num_windows, Mh*Mw, total_embed_dim]
        B_, N, C = x.shape
        # qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim]
        # reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head]
        # permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)

        # transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]
        # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]
        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        # relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH]
        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # [nH, Mh*Mw, Mh*Mw]
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            # mask: [nW, Mh*Mw, Mh*Mw]
            nW = mask.shape[0]  # num_windows
            # attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]
            # mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        # transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head]
        # reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim]
        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class SwinTransformerBlock(nn.Module):
    r""" Swin Transformer Block.

    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,
            attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, attn_mask):
        H, W = self.H, self.W
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # pad feature maps to multiples of window size
        # 把feature map给pad到window size的整数倍
        pad_l = pad_t = 0
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_x = x
            attn_mask = None

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]

        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]
        shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]

        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x

        if pad_r > 0 or pad_b > 0:
            # 把前面pad的数据移除掉
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x


class BasicLayer(nn.Module):
    """
    A basic Swin Transformer layer for one stage.

    Args:
        dim (int): Number of input channels.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
        super().__init__()
        self.dim = dim
        self.depth = depth
        self.window_size = window_size
        self.use_checkpoint = use_checkpoint
        self.shift_size = window_size // 2

        # build blocks
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(
                dim=dim,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0 if (i % 2 == 0) else self.shift_size,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def create_mask(self, x, H, W):
        # calculate attention mask for SW-MSA
        # 保证Hp和Wp是window_size的整数倍
        Hp = int(np.ceil(H / self.window_size)) * self.window_size
        Wp = int(np.ceil(W / self.window_size)) * self.window_size
        # 拥有和feature map一样的通道排列顺序,方便后续window_partition
        img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]
        # [nW, Mh*Mw, Mh*Mw]
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
        return attn_mask

    def forward(self, x, H, W):
        attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]
        for blk in self.blocks:
            blk.H, blk.W = H, W
            if not torch.jit.is_scripting() and self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, attn_mask)
            else:
                x = blk(x, attn_mask)
        if self.downsample is not None:
            x = self.downsample(x, H, W)
            H, W = (H + 1) // 2, (W + 1) // 2

        return x, H, W


class SwinTransformer(nn.Module):
    r""" Swin Transformer
        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
          https://arxiv.org/pdf/2103.14030

    Args:
        patch_size (int | tuple(int)): Patch size. Default: 4
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Swin Transformer layer.
        num_heads (tuple(int)): Number of attention heads in different layers.
        window_size (int): Window size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
    """

    def __init__(self, patch_size=4, in_chans=3, num_classes=1000,
                 embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24),
                 window_size=7, mlp_ratio=4., qkv_bias=True,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm, patch_norm=True,
                 use_checkpoint=False, **kwargs):
        super().__init__()

        self.num_classes = num_classes
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.patch_norm = patch_norm
        # stage4输出特征矩阵的channels
        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            # 注意这里构建的stage和论文图中有些差异
            # 这里的stage不包含该stage的patch_merging层,包含的是下个stage的
            layers = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
                                depth=depths[i_layer],
                                num_heads=num_heads[i_layer],
                                window_size=window_size,
                                mlp_ratio=self.mlp_ratio,
                                qkv_bias=qkv_bias,
                                drop=drop_rate,
                                attn_drop=attn_drop_rate,
                                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                                norm_layer=norm_layer,
                                downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
                                use_checkpoint=use_checkpoint)
            self.layers.append(layers)

        self.norm = norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool1d(1)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x):
        # x: [B, L, C]
        x, H, W = self.patch_embed(x)
        x = self.pos_drop(x)

        for layer in self.layers:
            x, H, W = layer(x, H, W)

        x = self.norm(x)  # [B, L, C]
        x = self.avgpool(x.transpose(1, 2))  # [B, C, 1]
        x = torch.flatten(x, 1)
        x = self.head(x)
        return x


def swin_tiny_patch4_window7_224(num_classes: int = 1000, **kwargs):
    # trained ImageNet-1K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=96,
                            depths=(2, 2, 6, 2),
                            num_heads=(3, 6, 12, 24),
                            num_classes=num_classes,
                            **kwargs)
    return model

引入预训练模型之后,进行花类数据集(上篇博客提到)进行微调,代码如下: 

import os
import argparse

import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

from my_dataset import MyDataSet
from model import swin_tiny_patch4_window7_224 as create_model
from utils import read_split_data, train_one_epoch, evaluate


def main(args):
    device = torch.device(args.device if torch.cuda.is_available() else "cpu")

    if os.path.exists("../weights") is False:
        os.makedirs("../weights")

    tb_writer = SummaryWriter()

    train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)

    img_size = 224
    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(img_size),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        "val": transforms.Compose([transforms.Resize(int(img_size * 1.143)),
                                   transforms.CenterCrop(img_size),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}

    # 实例化训练数据集
    train_dataset = MyDataSet(images_path=train_images_path,
                              images_class=train_images_label,
                              transform=data_transform["train"])

    # 实例化验证数据集
    val_dataset = MyDataSet(images_path=val_images_path,
                            images_class=val_images_label,
                            transform=data_transform["val"])

    batch_size = args.batch_size
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               pin_memory=True,
                                               num_workers=nw,
                                               collate_fn=train_dataset.collate_fn)

    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=batch_size,
                                             shuffle=False,
                                             pin_memory=True,
                                             num_workers=nw,
                                             collate_fn=val_dataset.collate_fn)

    model = create_model(num_classes=args.num_classes).to(device)

    if args.weights != "":
        assert os.path.exists(args.weights), "weights file: '{}' not exist.".format(args.weights)
        weights_dict = torch.load(args.weights, map_location=device)["model"]
        # 删除有关分类类别的权重
        for k in list(weights_dict.keys()):
            if "head" in k:
                del weights_dict[k]
        print(model.load_state_dict(weights_dict, strict=False))

    if args.freeze_layers:
        for name, para in model.named_parameters():
            # 除head外,其他权重全部冻结
            if "head" not in name:
                para.requires_grad_(False)
            else:
                print("training {}".format(name))

    pg = [p for p in model.parameters() if p.requires_grad]
    optimizer = optim.AdamW(pg, lr=args.lr, weight_decay=5E-2)

    for epoch in range(args.epochs):
        # train
        train_loss, train_acc = train_one_epoch(model=model,
                                                optimizer=optimizer,
                                                data_loader=train_loader,
                                                device=device,
                                                epoch=epoch)

        # validate
        val_loss, val_acc = evaluate(model=model,
                                     data_loader=val_loader,
                                     device=device,
                                     epoch=epoch)

        tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]
        tb_writer.add_scalar(tags[0], train_loss, epoch)
        tb_writer.add_scalar(tags[1], train_acc, epoch)
        tb_writer.add_scalar(tags[2], val_loss, epoch)
        tb_writer.add_scalar(tags[3], val_acc, epoch)
        tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)

        torch.save(model.state_dict(), "../weights/model-{}.pth".format(epoch))


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--num_classes', type=int, default=5)
    parser.add_argument('--epochs', type=int, default=10)
    parser.add_argument('--batch-size', type=int, default=8)
    parser.add_argument('--lr', type=float, default=0.0001)

    # 数据集所在根目录
    # https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
    parser.add_argument('--data-path', type=str,
                        default="../data/flower_photos")

    # 预训练权重路径,如果不想载入就设置为空字符
    parser.add_argument('--weights', type=str, default='../weights/swin_tiny_patch4_window7_224.pth',
                        help='initial weights path')
    # 是否冻结权重
    parser.add_argument('--freeze-layers', type=bool, default=False)
    parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')

    opt = parser.parse_args()

    main(opt)

 训练结果如下图所示:

即使迁移学习的模型训练数据集较小,训练和测试结果准确率还是很高的。

模型预测代码如下:

import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import swin_tiny_patch4_window7_224 as create_model


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    img_size = 224
    data_transform = transforms.Compose(
        [transforms.Resize(int(img_size * 1.14)),
         transforms.CenterCrop(img_size),
         transforms.ToTensor(),
         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

    # load image
    img_path = "../data/Image/flower.png"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)
    plt.show()
    img2 = img
    # [N, C, H, W]
    img = img.convert('RGB')
    img = data_transform(img)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)

    # read class_indict
    json_path = 'class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    with open(json_path, "r") as f:
        class_indict = json.load(f)

    # create model
    model = create_model(num_classes=5).to(device)
    # load model weights
    model_weight_path = "../weights/model-9.pth"
    model.load_state_dict(torch.load(model_weight_path, map_location=device))
    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()

    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)], predict[predict_cla].numpy())
    plt.title(print_res)
    for i in range(len(predict)):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)], predict[i].numpy()))

    plt.imshow(img2)
    plt.show()


if __name__ == '__main__':
    main()

 代码预测结果如下图所示:

大约99.8%的可能性为玫瑰类别。

二、MLP-Mixer

除了通过卷积和自注意力的方式处理图像,还有哪些方法可以实现呢?当然还有万能的全连接,MLP-Mixer采用全连接的方式实现图像分类操作。

全连接层处理图像难道不会导致参数过于庞大?这些问题在算力足够富裕的情况下都不是问题,使用全连接层会有更低的归纳偏置,而且在同准确率的情况下,处理速度会更快,如下图所示:

接下来我们就来看看MLP-Mixer是如何运转的吧!

2.1 网络模型整体结构

如上图所示,MLP-Mixer整体逻辑和ViT类似,但是该模型将ViT中的Transformer Encoder替换为N个Mixer Layer。

同样输入 224x224x3 的图像将其打成49个patch,即每个patch维度为 32x32x3 = 3072;再将 49x3072 的patch传入Per-patch Fully-connected进行降维操作,该层输出为 49x512;再将其传入N层Mixer Layer, Mixer Layer的输入输出维度是相同的;最后将Mixer Layer的输出做一次全局平均池化得到维度大小的向量之后,最后接入全连接层后输出分类概率。

2.2 Mixer Layer

Mixer Layer共进行两次MLP操作:

第一次为channel-mixing,即将每一维进行融合以混合每个位置的特征;

第二次是token-mixing,即将每一个token内部进行自融合,以混合空间信息。

  • MLP1

首先输入张量为 49x512,先经过层归一化后,将其进行转置T变为 512x49,然后对每一个patch(49维)进行MLP操作后,仍得到 512x49 的张量,再转置T回 49x512。

在各层归一化之间都采用残差链接,即Skip-connections。

因为channel-mixing相当于所有patch在通道上连接后,做 1x1 的卷积获取同位置的空间信息,所以MLP-Mixer是CNN的特例

  • MLP2

经过MLP1输出的 49x512 张量先进行层归一化,然后分别对每个patch(512维)进行MLP2操作后,仍输出 49x512 的张量。

可能图片上的标记更好理解:

2.3 MLP

 MLP是两个全连接层之间加一个GELU激活函数。

GELU激活函数:

GULE(x)=0.5\times [1+tanh(\sqrt{\frac{2}{\pi }}(x+0.047715x^{3}))]

因为MLP-Mixer采用全连接的方式,所以无需进行位置编码,因为token之间交换位置所对应的神经元权重不同,所以“语言”也会不同。

2.4 代码

MLP-Mixer网络搭建PyTorch如下所示:

class MlpBlock(nn.Module):
    def __init__(self, in_mlp_dim=196, out_mlp_dim=256):
        super(MlpBlock, self).__init__()
        self.mlp_dim = out_mlp_dim
        self.dense1 = nn.Linear(in_mlp_dim, out_mlp_dim)
        self.gelu = nn.GELU()
        self.dense2 = nn.Linear(out_mlp_dim, in_mlp_dim)

    def forward(self, x):
        y = self.dense1(x)
        y = self.gelu(y)
        y = self.dense2(y)
        return y


class MixerBlock(nn.Module):
    def __init__(self, tokens_mlp_dim=256, channels_mlp_dim=2048, batch_size=32):
        super(MixerBlock, self).__init__()
        self.batch_size = batch_size
        self.norm1 = nn.LayerNorm(512)  # 对512维的做归一化,默认给最后一个维度做归一化
        self.token_Mixing = MlpBlock(out_mlp_dim=tokens_mlp_dim)
        self.norm2 = nn.LayerNorm(512)      # 对512维的做归一化
        self.channel_mixing = MlpBlock(in_mlp_dim=512, out_mlp_dim=channels_mlp_dim)

    def forward(self, x):
        y = self.norm1(x)
        y = y.permute(0, 2, 1)
        y = self.token_Mixing(y)
        y = y.permute(0, 2, 1)
        x = x + y
        y = self.norm2(x)
        return x + self.channel_mixing(y)


class MlpMixer(nn.Module):
    def __init__(self, patches, num_classes, num_blocks, hidden_dim, tokens_mlp_dim, channels_mlp_dim):
        super(MlpMixer, self).__init__()
        self.stem = nn.Conv2d(3, hidden_dim, kernel_size=patches, stride=patches)
        self.mixer_block_1 = MixerBlock()
        self.mixer_blocks = nn.ModuleList([MixerBlock(tokens_mlp_dim, channels_mlp_dim) for _ in range(num_blocks)])
        self.pre_head_norm = nn.LayerNorm(hidden_dim)
        self.head = nn.Linear(hidden_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward(self, x):
        x = self.stem(x)
        b, c, h, w = x.shape
        x = x.view(b, c, -1).permute(0, 2, 1)
        for mixer_block in self.mixer_blocks:
            x = mixer_block(x)
        x = self.pre_head_norm(x)
        x = x.mean(dim=1)
        x = self.head(x)
        return x


model = MlpMixer(16, 10, 6, 512, 256, 2048)

因为算力不够我这里就没有拿数据去训练。 

 

总结

本周的学习到此结束,目前图像领域仍是Transformer思想为主导的模型霸榜,所以下周将会继续有关Transformer for Vision的学习。

如有错误,请各位大佬指出,谢谢!