Delaunay三角网,写了用半天,调试BUG用了2天……醉了。
基本思路比较简单,但效率并不是很快。
1. 先生成一个凸包;
2. 只考虑凸包上的点,将凸包环切,生成一个三角网,暂时不考虑Delaunay三角网各种规则。将生成的三角形放进三角形集合 Triangles 中;
3.将其它非凸包上的点全都插入。每插入一个点 ptA,都要判断被插入的点存在于 Triangles 集合的哪个三角形(trianA)之内,并将 ptA 与此三角形的三个点进行连接,删除 trianA,并将新生成的三角形加入到集合 Triangles 中。初始三角网生成结束;
3.1. 若 ptA 处在三角形DEF的DE边上,那么只连接点F与ptA ;
4.遍历三角形集合 Triangles(曾考虑用邻接矩阵,但是使用矩阵的复杂度反而会更高),每遍历到一个三角形DEF,都要遍历DEF的三条边DE,EF, FD,并分别寻找另外一个三角形,此三角形与DEF存在一个公共边;
5.使用LOP(Local Optimization Procedure: 局部优化处理)处理步骤4返回的两个三角形 与DEG。
5.1. 做三角形DEF的外接圆cirDEF,如果点G在圆cirDEF之内,则从Triangles 集合中删除三角形DEF与DEG,并加入两个新三角形:FGD与FGE。实际上,是将两个三角形组成的四边形的对角线对调了。
6.使用新生成的两个三角形FGD与FGE执行步骤5,递归。递归出口为,对三角形进行LOP处理时,没有出现5.1的情况。
Note:
1.暂时存在的问题:
a. 当点数过多时,生成过程中会出现“栈溢出”情况。测试时,2000个点之内是成功的。此情况是由于三角形过多导致的递归过深,需要重新组织算法结构才能避免。
b. 生成时间太长。可采取的办法1是完全采用不同的生成算法,比如分块等等。其次是由于寻找三角形的复杂度过高,达到了O(n),利用空间换时间的办法能接近O(1),只不过多一个成员来存储三角形的拓扑结构,这个比较简单但优化效果有限。
2. 一旦遇到了一些算法上的问题,那么搬出数学知识往往非常有效(尽管我的数学水平一望见底)。使用矩阵的方式能够让算法的实现更加清晰,但复杂度有可能会升高。
*下面使用了https://www.cnblogs.com/rkexy/p/9768475.html其中的代码。*
File: Delaunay.h
1 #pragma once 2 3 #include "ConvexHull.h" 4 #include "Triangle.h" 5 #include "Circle.cpp" 6 7 class TrianIndex final 8 { 9 public: 10 TrianIndex() 11 { 12 _isVaild = false; 13 } 14 15 ~TrianIndex() 16 { 17 _isVaild = false; 18 } 19 20 TrianIndex(unsigned int iA, unsigned int iB, unsigned int iC) 21 { 22 Init(iA, iB, iC); 23 } 24 25 TrianIndex(std::array<unsigned int, 3> pts) : 26 TrianIndex(pts[0], pts[1], pts[2]) 27 { 28 } 29 30 TrianIndex(const TrianIndex& other) 31 { 32 this->_isVaild = other._isVaild; 33 this->_ptIdx = other._ptIdx; 34 } 35 36 unsigned int& Get(int i) 37 { 38 if (i < 0 || i > 2 || !_isVaild) 39 { 40 ErrorThrow("Error Triangle Point Index[0, 2] Or Invaild Triangle: " + std::to_string(i)); 41 return _ptIdx[0]; 42 } 43 44 return _ptIdx[i]; 45 } 46 47 unsigned int& operator[](int i) 48 { 49 return Get(i); 50 } 51 52 const unsigned int Get(int i) const 53 { 54 TrianIndex* pThis = const_cast<TrianIndex*>(this); 55 return pThis->Get(i); 56 } 57 58 const unsigned int operator[](int i) const 59 { 60 TrianIndex* pThis = const_cast<TrianIndex*>(this); 61 return (*pThis)[i]; 62 } 63 64 TrianIndex& operator=(const TrianIndex& other) 65 { 66 this->_isVaild = other._isVaild; 67 this->_ptIdx = other._ptIdx; 68 return *this; 69 } 70 71 bool IsVaild() const 72 { 73 return _isVaild; 74 } 75 76 void SetVaild(bool isVaild) 77 { 78 _isVaild = isVaild; 79 } 80 81 void Init(unsigned int iA, unsigned int iB, unsigned int iC) 82 { 83 _ptIdx[0] = iA; 84 _ptIdx[1] = iB; 85 _ptIdx[2] = iC; 86 _isVaild = true; 87 } 88 89 private: 90 bool _isVaild; 91 std::array<unsigned int, 3> _ptIdx; 92 }; 93 94 //CHECK IT: It Has Been Abandoned. 95 // 96 class TrianMatrix final 97 { 98 public: 99 enum IsConnected : bool 100 { 101 NotConnected = false, 102 Connected = true 103 }; 104 105 TrianMatrix(): 106 TrianMatrix(0) 107 { 108 } 109 110 TrianMatrix(size_t ptCount) 111 { 112 _sign.clear(); 113 _sign.resize(ptCount); 114 for (unsigned int x = 0; x < ptCount; ++x) 115 { 116 _sign[x].resize(ptCount); 117 for (unsigned int y = 0; y < ptCount; ++y) 118 { 119 _sign[x][y] = IsConnected::NotConnected; 120 } 121 } 122 } 123 124 ~TrianMatrix() 125 { 126 _sign.clear(); 127 } 128 129 public: 130 size_t PointCount() const 131 { 132 return _sign.size(); 133 } 134 135 bool IsEmpty() const 136 { 137 return _sign.empty(); 138 } 139 140 // 141 bool GetTrianglesByPoint(unsigned int ptIdx, 142 std::vector<TrianIndex>& __out resTrians) const 143 { 144 bool isFound = false; 145 if (!CheckIndex(ptIdx)) 146 { 147 return false; 148 } 149 150 //Time Complexity: O(n^2). 151 for (unsigned int i = 0; i < PointCount(); ++i) 152 { 153 isFound = GetTrianglesByLine(ptIdx, i, resTrians); 154 } 155 156 return isFound; 157 } 158 159 bool GetTrianglesByLine(unsigned int ptIdxA, unsigned int ptIdxB, 160 std::vector<TrianIndex>& __out resTrians) const 161 { 162 bool isFound = false; 163 short foundCount = 0; 164 if (!CheckIndex(ptIdxA, ptIdxB)) 165 { 166 return false; 167 } 168 169 //Time Complexity: O(n). 170 for (unsigned int i = 0; i < PointCount(); ++i) 171 { 172 const std::vector<IsConnected>& pts = _sign[i]; 173 if (pts[ptIdxA] && pts[ptIdxB]) 174 { 175 TrianIndex trian(i, ptIdxA, ptIdxB); //The another point at the first element of resTrians. 176 resTrians.push_back(trian); 177 isFound = true; 178 179 if (++foundCount == 2) 180 { 181 return true; 182 } 183 } 184 } 185 return isFound; 186 } 187 188 inline bool Connect(unsigned int ptIdxA, unsigned int ptIdxB) 189 { 190 return SetConnectedState(ptIdxA, ptIdxB, IsConnected::Connected); 191 } 192 193 inline bool DisConnect(unsigned int ptIdxA, unsigned int ptIdxB) 194 { 195 return SetConnectedState(ptIdxA, ptIdxB, IsConnected::NotConnected); 196 } 197 198 inline bool SetConnectedState(unsigned int ptIdxA, unsigned int ptIdxB, IsConnected isConn) 199 { 200 if (!CheckIndex(ptIdxA, ptIdxB)) 201 { 202 return false; 203 } 204 205 _sign[ptIdxA][ptIdxB] = isConn; 206 _sign[ptIdxB][ptIdxA] = isConn; 207 return true; 208 } 209 210 bool IsExist(const TrianIndex& trian) const 211 { 212 if (!CheckIndex(trian[0], trian[1], trian[2])) 213 { 214 return false; 215 } 216 217 unsigned int ptA = trian[0]; 218 unsigned int ptB = trian[1]; 219 unsigned int ptC = trian[2]; 220 221 return (_sign[ptA][ptB] && _sign[ptA][ptC] && _sign[ptB][ptC]); 222 } 223 224 private: 225 bool CheckIndex(unsigned int idx, ...) const 226 { 227 std::vector<unsigned int> indeies; 228 auto CheckFunc = [&indeies, this](unsigned int newIdx) -> bool 229 { 230 if (newIdx >= this->PointCount()) 231 { 232 return false; 233 } 234 235 for (std::vector<unsigned int>::const_iterator it = indeies.begin(); 236 it != indeies.end(); ++it) 237 { 238 if (*it == newIdx) 239 { 240 return true; 241 } 242 } 243 indeies.push_back(newIdx); 244 return false; 245 }; 246 247 va_list aps; 248 va_start(aps, idx); 249 unsigned int* pNextArg = nullptr; 250 bool isVaild = false; 251 do 252 { 253 pNextArg = va_arg(aps, unsigned int*); 254 if (pNextArg) 255 { 256 unsigned int tmp = *pNextArg; 257 if (!CheckFunc(tmp)) 258 { 259 isVaild = true; 260 } 261 } 262 } while (pNextArg != NULL); 263 264 va_end(aps); 265 return isVaild; 266 } 267 268 269 private: 270 std::vector< 271 std::vector<IsConnected> 272 > _sign; 273 }; 274 275 typedef std::vector<TrianIndex> Triangles; 276 class Delaunay final 277 { 278 public: 279 Delaunay(); 280 ~Delaunay(); 281 282 public: 283 void AddPoint(const Point2D<int>& __in newPoint); 284 void AddRandomPoints(int count, int maxX, int maxY); 285 286 void GetAllTriangles(Triangles& __out ts) const; 287 void GetAllPoints(Points& __out pts) const; 288 void Generate(); 289 290 void Clear(); 291 292 private: 293 bool GetTrianIndexWithLine(int ptIdxA, int ptIdxB, std::array<size_t/*The Triangle Index Of m_triangles.*/, 2> & __out res, int ptIdxCur = -1) const; 294 void CutProcess(const Points& chPoints); 295 void ConvexHullCut(); 296 void LOP(unsigned int trianIndex, bool* isProcessed); //Local Optimization Procedure. 297 298 private: 299 Points m_points; 300 Triangles m_triangles; 301 };
File: Delaunay.cpp
1 #include "Delaunay.h" 2 #include <bitset> 3 4 Delaunay::Delaunay() 5 { 6 m_points.Clear(); 7 m_triangles.clear(); 8 } 9 10 11 Delaunay::~Delaunay() 12 { 13 Clear(); 14 } 15 16 void Delaunay::AddPoint(const Point2D<int>& newPoint) 17 { 18 m_points.Add(newPoint); 19 } 20 21 void Delaunay::AddRandomPoints(int count, int maxX, int maxY) 22 { 23 std::vector<Point2D<int>> pointsArray; 24 Point2D<int>::RandomPoints(count, maxX, maxY, pointsArray); 25 26 m_points.Clear(); 27 for (int i = 0; i < count; ++i) 28 { 29 const Point2D<int>& eachpt = pointsArray.at(i); 30 PointNode pn; pn.Init(i, eachpt); 31 m_points.Add(pn); 32 } 33 } 34 35 void Delaunay::ConvexHullCut() 36 { 37 if (m_points.Size() < 3) 38 { 39 ErrorThrow("Points count too less."); 40 return; 41 } 42 m_triangles.clear(); 43 44 ConvexHull ch(m_points); 45 Points chPoints; 46 ch.Generate(); 47 ch.GetConvexHullPoints(chPoints); 48 49 CutProcess(chPoints); 50 } 51 52 bool Delaunay::GetTrianIndexWithLine(int ptIdxA, int ptIdxB, std::array<size_t, 2> & __out res, int ptIdxCur) const 53 { 54 if (ptIdxA == ptIdxB || ptIdxCur == ptIdxA || ptIdxCur == ptIdxB) 55 { 56 ErrorThrow("Error Parameters! \n ptIdxA: " + std::to_string(ptIdxA) + ", ptIdxB: " + std::to_string(ptIdxB) + ", ptIdxCur: " + std::to_string(ptIdxCur)); 57 return false; 58 } 59 res.fill(-1); 60 uint8_t cnt = 0; 61 bool isFound = false; 62 63 for(size_t i =0; i < m_triangles.size(); ++i) 64 { 65 if (cnt > 2) 66 { 67 return isFound; 68 } 69 70 std::bitset<3> foundSign = 0; 71 int8_t bit0Idx = -1; 72 const TrianIndex& tIdx = m_triangles[i]; 73 for (uint8_t i = 0; i < 3; i++) 74 { 75 if (tIdx[i] == ptIdxA || tIdx[i] == ptIdxB) 76 { 77 foundSign = (1 << i) | foundSign.to_ulong(); 78 } 79 else 80 { 81 bit0Idx = i; 82 } 83 } 84 85 if (2 == foundSign.count() && tIdx[bit0Idx] != ptIdxCur) 86 { 87 res[cnt++] = i; 88 isFound = true; 89 } 90 } 91 return isFound; 92 } 93 94 void Delaunay::GetAllTriangles(Triangles & ts) const 95 { 96 ts = m_triangles; 97 } 98 99 void Delaunay::GetAllPoints(Points & pts) const 100 { 101 pts = m_points; 102 } 103 104 void Delaunay::CutProcess(const Points & chPoints) 105 { 106 int chSize = static_cast<int>(chPoints.Size()); 107 108 //Next Convex Hull Points. 109 Points nextPts; 110 111 std::array<PointNode, 3> aTriangle; 112 int i = 0; 113 int atSize = 0; /*atSize: aTriangle size.*/ 114 115 while (i <= chSize) /*Including the first point.*/ 116 { 117 const PointNode*const cutpt = chPoints.GetBySequence(i % chSize); 118 aTriangle[atSize++] = *cutpt; 119 120 if (atSize == 3) 121 { 122 if (Line<int>::IsCollinear(3, aTriangle[0]._node, aTriangle[1]._node, aTriangle[2]._node)) 123 { 124 //Delete the second point. 125 aTriangle[1] = aTriangle[2]; 126 --atSize; 127 ++i; 128 continue; 129 } 130 131 //Form a triangle. 132 TrianIndex ttmp(aTriangle[0]._index, aTriangle[1]._index, aTriangle[2]._index); 133 m_triangles.push_back(ttmp); 134 135 //The last serves as the starting point for the next triangle. 136 aTriangle[0] = aTriangle[2]; 137 atSize = 1; 138 139 nextPts.Add(aTriangle[2]); 140 } 141 ++i; 142 } 143 144 //Add the remaining points. 145 //The first point in aTriangle has been added. 146 for (int i = 1; i < atSize; ++i) 147 { 148 nextPts.Add(aTriangle[i]); 149 } 150 151 152 if (nextPts.Size() >= 3) 153 { 154 CutProcess(nextPts); 155 } 156 } 157 158 //Generate the delaunay. 159 void Delaunay::Generate() 160 { 161 ConvexHullCut(); 162 163 for (int i = 0 ; i < m_points.Size(); ++i) 164 { 165 const Point2D<int>& eachPt = m_points(i); 166 for(std::vector<TrianIndex>::iterator it = m_triangles.begin(); it != m_triangles.end(); ) 167 { 168 const TrianIndex eachTri = *it; 169 const Point2D<int>& ptA = m_points[eachTri[0]]; 170 const Point2D<int>& ptB = m_points[eachTri[1]]; 171 const Point2D<int>& ptC = m_points[eachTri[2]]; 172 Triangle tmpTri(ptA, ptB, ptC); 173 174 bool isBreak = false; 175 Triangle::EnumPTRelation eptr = tmpTri.RelationPT(eachPt); 176 switch (eptr) 177 { 178 case Triangle::EnumPTRelation::POINT_ON_VERTICE: 179 case Triangle::EnumPTRelation::POINT_OUTSIDE: 180 ++it; 181 isBreak = false; 182 break; 183 184 case Triangle::EnumPTRelation::POINT_ON_LINE: 185 for (unsigned int j = 0; j < 3; ++j) 186 { 187 unsigned int ptIdxA = j % 3; 188 unsigned int ptIdxB = (j + 1) % 3; 189 unsigned int ptIdxC = (j + 2) % 3; 190 if (Line<int>::IsCollinear(3, m_points[eachTri[ptIdxA]], m_points[eachTri[ptIdxB]], eachPt)) 191 { 192 TrianIndex tmpAPC(eachTri[ptIdxC], i, eachTri[ptIdxA]); 193 TrianIndex tmpAPB(eachTri[ptIdxC], i, eachTri[ptIdxB]); 194 it = m_triangles.erase(it); //Delete ABC. 195 m_triangles.push_back(tmpAPC); 196 m_triangles.push_back(tmpAPB); 197 break; 198 } 199 } 200 isBreak = false; 201 break; 202 203 case Triangle::EnumPTRelation::POINT_INSIDE: 204 it = m_triangles.erase(it); 205 for (unsigned int j = 0; j < 3; ++j) 206 { 207 unsigned int ptIdx = j % 3; 208 unsigned int ptIdxAnother = (j + 1) % 3; 209 210 TrianIndex tmp(eachTri[ptIdx], i, eachTri[ptIdxAnother]); 211 m_triangles.push_back(tmp); 212 } 213 isBreak = true; 214 break; 215 } 216 217 if(isBreak) 218 { 219 break; 220 } 221 } 222 } 223 224 //LOP 225 const size_t TrianglesSize = m_triangles.size(); 226 bool* isProcessed = nullptr; 227 if (isProcessed == nullptr) 228 { 229 isProcessed = new bool[TrianglesSize]; 230 memset(isProcessed, false, TrianglesSize); 231 } 232 233 for (unsigned int i = 0; i < TrianglesSize; ++i) 234 { 235 LOP(i, isProcessed); 236 } 237 238 if (isProcessed != nullptr) 239 { 240 delete[] isProcessed; 241 } 242 } 243 244 void Delaunay::LOP(unsigned int trianIndex, bool* isProcessed = nullptr) 245 { 246 auto SetProcessedFunc = [&isProcessed](unsigned int idx, bool val) 247 { 248 if (nullptr != isProcessed) 249 { 250 isProcessed[idx] = val; 251 } 252 }; 253 254 if (trianIndex >= m_triangles.size()) 255 { 256 ErrorThrow("The Index Of Triangles Out Of Range. trianIndex: " + std::to_string(trianIndex)); 257 return; 258 } 259 260 if (isProcessed != nullptr && isProcessed[trianIndex]) 261 { 262 return; 263 } 264 265 TrianIndex* const curIdxT = &m_triangles[trianIndex]; 266 for (unsigned int i = 0; i < 3; ++i) 267 { 268 unsigned int ptIdxA = curIdxT->Get(i % 3); 269 unsigned int ptIdxB = curIdxT->Get((i + 1) % 3); 270 unsigned int ptIdxC = curIdxT->Get((i + 2) % 3); 271 272 //Looking For Triangles Containing Line AB. 273 std::array<size_t, 2> trianFound; 274 bool isFound = GetTrianIndexWithLine(ptIdxA, ptIdxB, trianFound, ptIdxC); 275 if (!isFound) 276 { 277 //TODO: Not Found The Triangles. 278 // 279 continue; 280 } 281 282 for (int eachIdx = 0; eachIdx < trianFound.size()/*eachIdx < 2*/; ++eachIdx) 283 { 284 int foundIdx = static_cast<int>(trianFound[eachIdx]); 285 if (foundIdx < 0/* == -1*/) 286 { 287 continue; 288 } 289 290 const TrianIndex& trianABD = m_triangles[foundIdx]; 291 292 //Find The Point In eachT, And Not Containing A & B. 293 unsigned int ptIdxD = 0; 294 for (int epi = 0; epi < 3; ++epi) 295 { 296 unsigned int ep = trianABD[epi]; 297 if (ep != ptIdxA && ep != ptIdxB) 298 { 299 ptIdxD = ep; 300 } 301 } 302 303 const Triangle curT(m_points[trianABD[0]], m_points[trianABD[1]], m_points[trianABD[2]]); 304 Circle<double, double> cir; 305 curT.Circumcircle(cir); 306 if (MyMathTools::LessThan(cir.radius/*Length OD*/, Point2D<double>::Distance(cir.center, m_points[ptIdxC])/*Length OC*/)) 307 { 308 continue; 309 } 310 311 //ABC(curIdxT) & ABD(foundIdx) -> ACD & BCD 312 //A -> ptIdxA; B -> ptIdxB; C -> ptIdxC; D -> ptIdxD 313 curIdxT->Init(ptIdxA, ptIdxC, ptIdxD); 314 m_triangles[foundIdx].Init(ptIdxB, ptIdxC, ptIdxD); 315 316 SetProcessedFunc(trianIndex, false); 317 SetProcessedFunc(foundIdx, false); 318 LOP(trianIndex, isProcessed); 319 LOP(foundIdx, isProcessed); 320 } 321 } 322 SetProcessedFunc(trianIndex, true); 323 } 324 325 void Delaunay::Clear() 326 { 327 m_points.Clear(); 328 m_triangles.clear(); 329 }
File: TestMain.cpp (win32 默认程序)
1 case WM_PAINT: 2 hdc = BeginPaint(hWnd, &ps); 3 { 4 HBRUSH hBrush = CreateSolidBrush(RGB(255, 0, 45)); 5 HBRUSH hOldBrush = (HBRUSH)SelectObject(hdc, hBrush); 6 7 const int count = 277; 8 Delaunay dela; 9 10 dela.AddRandomPoints(count, 1200, 720); 11 dela.Generate(); 12 13 Points points; 14 Triangles ts; 15 dela.GetAllTriangles(ts); 16 dela.GetAllPoints(points); 17 18 const int pointWidth = 3; 19 int i = 0; 20 for (int i = 0; i < points.Size(); ++i) 21 { 22 const Point2D<int>& pt = points[i]; 23 Rectangle(hdc, pt.x - pointWidth, pt.y - pointWidth, pt.x + pointWidth, pt.y + pointWidth); 24 i++; 25 } 26 27 for (const TrianIndex& et : ts) 28 { 29 Triangle tmpTri(points[et[0]], points[et[1]], points[et[2]]); 30 31 std::array<Point2D<int>, 3> pts; 32 tmpTri.GetVertices(pts); 33 34 std::array<Line<int>, 3> ls; 35 tmpTri.GetLines(ls); 36 37 for (int idx = 0; idx < 3; idx++) 38 { 39 const Point2D<int>& pt = pts[idx]; 40 Rectangle(hdc, pt.x - pointWidth, pt.y - pointWidth, pt.x + pointWidth, pt.y + pointWidth); 41 42 const Line<int>& l = ls[idx]; 43 const Point2D<int>& ptA = l.GetPointA(); 44 const Point2D<int>& ptB = l.GetPointB(); 45 46 MoveToEx(hdc, ptA.x, ptA.y, NULL); 47 LineTo(hdc, ptB.x, ptB.y); 48 } 49 } 50 51 SelectObject(hdc, hOldBrush); 52 DeleteObject(hBrush); 53 } 54 55 EndPaint(hWnd, &ps); 56 break;
生成结果: