一、集成学习综述
- 1.集成方法或元算法是对其他算法进行组合的一种方式,下面的博客中主要关注的是AdaBoost元算法。将不同的分类器组合起来,而这种组合结果被称为集成方法/元算法。使用集成算法时会有很多的形式,如:
- 不同算法的集成
- 同一种算法在不同设置下的集成
- 数据集不同部分分配给不同分类器之后的集成
-
- AdaBoost算法优缺点
- 优点:泛化错误率低,易编码,可以应用在大部分分类器上,无参数调整
- 缺点:对离群点敏感
- 适用数据类型:数值型和标称型数据
二、基于数据集多重采样的分类器
- 1.bagging方法(bootstrap aggregating)
- 主要思想:
- (1). 从原始数据集中抽取新的训练集。每次从原始数据集中使用有放回采样数据的方法,抽取n个样本(在原始数据集中,有些样本可能被重复采样,而有些样本可能一次都未被采样到)。共进行k次抽取,得到k个新的数据集(k个新训练集之间是相互独立的),新的数据集的大小和原始数据集的大小相等。
- (2). 每次使用一个新的训练集得到一个模型,k个新的训练集总共可以得到k个新的模型
- (3). 对分类问题:将(2)中得到的k个模型采用投票方式得到分类结果;对回归问题:计算(2)中模型的均值作为最后的结果(所有模型的重要性相同!!!)
-
- boosting方法
- 不论是在bagging还是boosting当中,所使用的多个分类器的类型都是一样的。但是,在boosting中,不同的分类器通过串行训练来获得的,每个新分类器都根据已训练出的分类器的性能来进行训练。boosting是通过关注被已有分类器错分的那些数据来获得新的分类器,,boosting方法有多个版本,下面介绍的是最流行的一个版本AdaBoosting算法。
- 主要思想:
- (1). 对每一次的训练数据样本赋予一个权重,并且每一次样本的权重分布依赖上一次的分类结果。
- (2). 基分类器之间采用序列的线性加权方式来组合。
三、bagging方法与boosting方法对比
- 1.样本选择上:
- bagging方法:新的训练集是在原始训练集中采用有放回的方式采样样本的,从原始训练集中选取的每个新的训练集之间是相互独立的。
- boosting方法:每一次的训练集不变,只是训练集中的每个样本在分类器中的权重发生变化,而权重是根据上一次的分类结果进行调整的。
- 2.样本权重上:
- bagging方法:使用均匀选取样本,每个样本的权重相同。
- boosting方法:根据错误率不断调整样本的权重,错误率越大,权重越大。
- 3.预测函数:
- bagging方法:所有预测函数的权重相等
- boosting方法:每个弱分类器都有相应的权重,对分类误差小的分类器会有更大的权重
- 4.并行计算:
- bagging方法:各个预测函数可以并行计算
- boosting方法:各个预测函数只能顺序生成,因为后一个模型需要前一个模型的输出结果
四、集成学习的常见应用
- 1.常见算法
- Bagging + 决策树 = 随机森林
- AdaBoost + 决策树 = 提升树
- Gradient Boosting + 决策树 = GBDT
- 2.基于错误率提升分类器的性能(AdaBoost算法原理介绍)
- 2.1 AdaBoost算法介绍
集成学习算法思想:使用弱分类器和多个样本来构建一个强分类器。AdaBoost是adaptive boosting的缩写,主要运行过程是:首先,对训练数据集中的每个样本进行训练,并赋予每个样本一个权重,这些权重构成一个向量D。一开始,这些样本的初始权重都是相同的!然后,在训练数据上训练出一个弱分类器并计算弱分类器的错误率。接着,在相同的训练数据上再次训练弱分类器。在分类器的第二次训练过程中,将会重新调整每个样本的权重!其中对第一次中分对的样本降低其权重,在第一次中分错的样本提高其权重。为了从所有弱分类器中得到最终的分类结果,AdaBoost还会对每个弱分类器都分配一个权重值alpha,这些alpha值是基于每个弱分类器的错误率进行计算出来的。
- 2.2 错误率ε的定义如下:
- 2.3 alpha的计算公式
- 2.4 AdaBoost算法流程如下
- 2.5 对上图的解释如下:
- 首先,对训练数据集中的每个样本进行初始化权重,此时每个样本的权重是相同的,这些权重构成了权重向量D;然后,经过第一个弱分类器后,训练集中每个样本的权重发生变化,根据第一个弱分类器的分类结果计算其错误率ε;接着,计算出alpha的值;计算出aplha值之后,可以对权重向量D进行更新,使得对第一个分类器分类结果中分类错误的样本,提高其权重。对分类正确的样本,降低其权重。权重向量D的更新方法如下:
- 2.5.1 如果某个样本被第一个弱分类器分类正确,那么该样本的权重更新公式是:
- 2.5.2 如果某个样本被第一个弱分类器分类错误,那么该样本的权重更新公式是:
- 在计算出D后,AdaBoost又开始进行下一轮的迭代,AdaBoost算法会不断的重复训练和调整权重,直到训练错误率为0或弱分类器的数目达到用户的指定值为止。
-
- AdaBoost算法实战(基于单层决策树构建弱分类器)
- 3.1从上图可以看出,试着从某个坐标轴上选择一个值(即选择一条与坐标轴平行的直线)来将所有的蓝色圆点和橘色圆点分开,这显然是不可能的。这就是单层决策树难以处理的一个著名问题。通过使用多颗单层决策树,我们可以构建出一个能够对该数据集完全正确分类的分类器。
def loadSimData():
"""
创建单层决策树的数据集
"""
dataMat = np.matrix([[1., 2.1],
[1.5, 1.6],
[1.3, 1.],
[1., 1.],
[2., 1.]])
classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
return dataMat, classLabels
def showDataSet(dataMat, labelMat):
"""
数据可视化
"""
data_plus = []
data_minus = []
for i in range(len(dataMat)):
if labelMat[i] > 0:
data_plus.append(dataMat[i])
else:
data_minus.append(dataMat[i])
data_plus_np = np.array(data_plus)
data_minus_np = np.array(data_minus)
plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1])
plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1])
plt.title("Dataset Visualize")
plt.xlabel("x1")
plt.ylabel("x2")
plt.show()
if __name__ == '__main__':
data_Arr, classLabels = loadSimData()
showDataSet(data_Arr, classLabels)
- 3.2蓝色横线上的是一个类别,蓝色横线下边是一个类别。显然,此时有一个蓝点分类错误,计算此时的分类误差错误率为1/5 = 0.2。这个横线与坐标轴的y轴的交点,就是我们设置的阈值,通过不断改变阈值的大小,找到使单层决策树的分类误差最小的阈值。同理,竖线也是如此,找到最佳分类的阈值,就找到了最佳单层决策树。
import numpy as np
import matplotlib.pyplot as plt
"""
构建单层决策树
"""
def loadSimData():
data_Mat = np.matrix(
[[1., 2.1], [1.5, 1.6], [1.3, 1.], [1., 1.], [2., 1.1]])
class_Labels = [1.0, 1.0, -1.0, -1.0, 1.0]
return data_Mat, class_Labels
def stumpClassify(dataMatrix, dimen, threshVal, threshIneq):
"""
单层决策树分类函数
dataMatirx:数据矩阵
dimen: 第几列,也就是第几个特征
threshVal:阈值
threshIneq:标志
"""
retArray = np.ones((np.shape(dataMatrix)[0], 1))
if threshIneq == 'lt':
retArray[dataMatrix[:, dimen] <= threshVal] = -1.0
else:
retArray[dataMatrix[:, dimen] > threshVal] = -1.0
return retArray
def buildStump(dataArr, classLabels, D):
"""
找到数据集上的最佳单层决策树
dataArr:数据矩阵
classLabels:数据标签
D:样本权重
return:
bestStump:用来存储最佳单层决策树信息的字典
minError:最小误差
bestClasEst:最佳的分类结果
"""
dataMatrix = np.mat(dataArr)
labelMat = np.mat(classLabels).T
m, n = np.shape(dataMatrix)
numsteps = 10.0
bestStump = {}
bestClasEst = np.mat(np.zeros((m, 1)))
minError = float('inf')
for i in range(n):
rangeMin = dataMatrix[:, i].min()
rangeMax = dataMatrix[:, i].max()
stepSize = (rangeMax - rangeMin) / numsteps
for j in range(-1, int(stepSize) + 1):
for inequal in ['lt', 'gt']:
threshVal = (rangeMin + float(j) * stepSize)
predictVals = stumpClassify(
dataMatrix, i, threshVal, inequal)
errArr = np.mat(np.ones((m, 1)))
errArr[predictVals == labelMat] = 0
weightError = D.T * errArr
print("split: dim %d, thresh %.2f, thresh inequal %s, the weight error: %.3f" % (
i, threshVal, inequal, weightError))
if weightError < minError:
minError = weightError
bestClasEst = predictVals.copy()
bestStump['dim'] = i
bestStump['thresh'] = threshVal
bestStump['inequal'] = inequal
return bestStump, minError, bestClasEst
if __name__ == '__main__':
dataArr, classLabels = loadSimData()
D = np.mat(np.ones((5, 1)) / 5)
bestStump, minError, bestClasEst = buildStump(dataArr, classLabels, D)
print("bestStump:\n", bestStump)
print("minError:\n", minError)
print("bestClasEst:\n", bestClasEst)
- 3.3 通过遍历,改变不同的阈值,计算最终的分类误差,找到分类误差最小的分类方式,即为我们要找的最佳单层决策树。这里lt表示less than,表示分类方式,对于小于阈值的样本点赋值为-1,gt表示greater than,也是表示分类方式,对于大于阈值的样本点赋值为-1。经过遍历,我们找到,训练好的最佳单层决策树的最小分类误差为0,就是对于该数据集,无论用什么样的单层决策树,分类误差最小就是0。这就是我们训练好的弱分类器。接下来,使用AdaBoost算法提升分类器性能,将分类误差缩短到0,看下AdaBoost算法是如何实现的。
split: dim 0, thresh 0.90, thresh inequal lt, the weight error: 0.400
split: dim 0, thresh 0.90, thresh inequal gt, the weight error: 0.600
split: dim 0, thresh 1.00, thresh inequal lt, the weight error: 0.400
split: dim 0, thresh 1.00, thresh inequal gt, the weight error: 0.600
split: dim 1, thresh 0.89, thresh inequal lt, the weight error: 0.400
split: dim 1, thresh 0.89, thresh inequal gt, the weight error: 0.600
split: dim 1, thresh 1.00, thresh inequal lt, the weight error: 0.000
split: dim 1, thresh 1.00, thresh inequal gt, the weight error: 1.000
bestStump:
{'dim': 1, 'thresh': 1.0, 'inequal': 'lt'}
minError:
[[0.]]
bestClasEst:
[[ 1.]
[ 1.]
[-1.]
[-1.]
[ 1.]]
"""
构建单层决策树
"""
def loadSimData():
data_Mat = np.matrix(
[[1., 2.1], [1.5, 1.6], [1.3, 1.], [1., 1.], [2., 1.1]])
class_Labels = [1.0, 1.0, -1.0, -1.0, 1.0]
return data_Mat, class_Labels
def stumpClassify(dataMatrix, dimen, threshVal, threshIneq):
"""
单层决策树分类函数
dataMatirx:数据矩阵
dimen: 第几列,也就是第几个特征
threshVal:阈值
threshIneq:标志
"""
retArray = np.ones((np.shape(dataMatrix)[0], 1))
if threshIneq == 'lt':
retArray[dataMatrix[:, dimen] <= threshVal] = -1.0
else:
retArray[dataMatrix[:, dimen] > threshVal] = -1.0
return retArray
def buildStump(dataArr, classLabels, D):
"""
找到数据集上的最佳单层决策树
dataArr:数据矩阵
classLabels:数据标签
D:样本权重
return:
bestStump:用来存储最佳单层决策树信息的字典
minError:最小误差
bestClasEst:最佳的分类结果
"""
dataMatrix = np.mat(dataArr)
labelMat = np.mat(classLabels).T
m, n = np.shape(dataMatrix)
numsteps = 10.0
bestStump = {}
bestClasEst = np.mat(np.zeros((m, 1)))
minError = float('inf')
for i in range(n):
rangeMin = dataMatrix[:, i].min()
rangeMax = dataMatrix[:, i].max()
stepSize = (rangeMax - rangeMin) / numsteps
for j in range(-1, int(stepSize) + 1):
for inequal in ['lt', 'gt']:
threshVal = (rangeMin + float(j) * stepSize)
predictVals = stumpClassify(
dataMatrix, i, threshVal, inequal)
errArr = np.mat(np.ones((m, 1)))
errArr[predictVals == labelMat] = 0
weightError = D.T * errArr
print("split: dim %d, thresh %.2f, thresh inequal %s, the weight error: %.3f" % (
i, threshVal, inequal, weightError))
if weightError < minError:
minError = weightError
bestClasEst = predictVals.copy()
bestStump['dim'] = i
bestStump['thresh'] = threshVal
bestStump['inequal'] = inequal
return bestStump, minError, bestClasEst
def adaBoostTrainDS(dataArr, classLabels, numIt=40):
weakClassArr = []
m = np.shape(dataArr)[0]
D = np.mat(np.ones((m, 1)) / m)
aggClassEst = np.mat(np.zeros((m, 1)))
for i in range(numIt):
bestStump, error, classEst = buildStump(
dataArr, classLabels, D)
print("D:", D.T)
alpha = float(0.5 * np.log((1.0 - error) / max(error, 1e-16)))
bestStump['alpha'] = alpha
weakClassArr.append(bestStump)
print("classEst:", classEst.T)
expon = np.multiply(-1 * alpha *
np.mat(classLabels).T, classEst)
D = np.multiply(D, np.exp(expon))
D = D / D.sum()
aggClassEst += alpha * classEst
print("aggClassEst:", aggClassEst.T)
aggErrors = np.multiply(np.sign(aggClassEst) !=
np.mat(classLabels).T, np.ones((m, 1)))
errorRate = aggErrors.sum() / m
print("total error:", errorRate)
if errorRate == 0.0:
break
return weakClassArr, aggClassEst
if __name__ == '__main__':
dataArr, classLabels = loadSimData()
weakClassArr, aggClassEst = adaBoostTrainDS(dataArr, classLabels)
print(weakClassArr)
print(aggClassEst)