首先,如果这个图本身就不存在欧拉回路,那么显然无解。
对于每个子串:
1.如果里面有不存在的边,那么显然无解。
2.如果里面有一条边重复出现,那么显然也无解。
3.对于每条边,维护其前驱与后继,若前驱或后继超过$1$个,那么显然也无解。
如此所有边将形成一条条链或者环的结构,如果存在环,那么显然也无解。
对于每条链,在新图中添加链头到链尾的边,然后判断新图中是否存在从$1$开始的欧拉回路即可。
时间复杂度$O(m\log m)$。
#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int N=50010,M=200010;
int n,m,q,i,j,k,pos,cnt,d[N],a[M],b[M],last[M],pre[M],nxt[M];
int g[N],V[M],W[M],NXT[M],vis[M],ed;
struct E{int x,y;}e[M];
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
inline bool cmp(const E&a,const E&b){return a.x==b.x?a.y<b.y:a.x<b.x;}
void NIE(){puts("NIE");exit(0);}
inline int ask(int x,int y){
int l=1,r=m,mid;
while(l<=r){
mid=(l+r)>>1;
if(e[mid].x==x&&e[mid].y==y)return mid;
if(e[mid].x<x||e[mid].x==x&&e[mid].y<y)l=mid+1;else r=mid-1;
}
return 0;
}
inline void add(int x,int y,int z){d[x]++,d[y]--;V[++ed]=y;W[ed]=z;NXT[ed]=g[x];g[x]=ed;}
void dfs(int x){
for(int&i=g[x];i;){
if(vis[i]){i=NXT[i];continue;}
vis[i]=1;
dfs(V[i]);
}
}
int main(){
read(n),read(m);
for(i=1;i<=m;i++)read(e[i].x),read(e[i].y),d[e[i].x]++,d[e[i].y]--;
for(i=1;i<=n;i++)if(d[i])NIE();
sort(e+1,e+m+1,cmp);
read(q);
for(pos=1;pos<=q;pos++){
read(k);
for(i=1;i<=k;i++)read(a[i]);
for(i=1;i<k;i++){
b[i]=ask(a[i],a[i+1]);
if(!b[i])NIE();
if(last[b[i]]==pos)NIE();
last[b[i]]=pos;
}
for(k--,i=1;i<k;i++){
if(!nxt[b[i]])nxt[b[i]]=b[i+1];
else if(nxt[b[i]]!=b[i+1])NIE();
if(!pre[b[i+1]])pre[b[i+1]]=b[i];
else if(pre[b[i+1]]!=b[i])NIE();
}
}
for(i=1;i<=n;i++)d[i]=0;
for(i=1;i<=m;i++)if(!pre[i]){
for(k=0,j=i;j;j=nxt[j])a[++k]=j,cnt++;
add(e[i].x,e[a[k]].y,a[k]);
}
if(cnt<m)NIE();
if(!g[1])NIE();
for(i=1;i<=n;i++)if(d[i])NIE();
dfs(1);
for(i=2;i<=n;i++)if(g[i])NIE();
return puts("TAK"),0;
}