题意:
求A^B的所有约数(即因子)之和,并对其取模 9901再输出。
思路:
A可以表示为A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 其中pi均为素数
那么A的所有因子之和可以表示成
S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)
然后可以转化成等比公式,在求除法同余的时候求逆元
对于 a/b mod m可以转化成 (a mod bm)/m /*参考ACdreamers
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef long double ld;
const ld eps=1e-10;
const int inf = 0x3f3f3f;
const int maxn = 1e6+10;
bool check[maxn];
int prime[maxn]; ll tot; void get_prime()
{
tot = 0;
memset(check,false,sizeof(check));
check[1] = true;
for(int i = 2; i<= maxn; i++)
{
if(!check[i])
{
prime[tot++] = i;
for(int j = i+i; j <= maxn; j+=i)
check[j] = true;
}
}
} ll multi(ll a,ll b,ll mod)
{
ll ans = 0;
a%=mod;
while(b)
{
if(b & 1)
{
ans = (ans+a) % mod;
b -- ;
}
a = (a+a) % mod;
b >>= 1;
}
return ans;
} ll pow_mod(ll a,ll n,ll p)
{
ll ans = 1;
a %= p;
while(n)
{
if(n & 1)
{
ans = multi(ans,a,p);
n--;
} a = multi(a,a,p);
n >>= 1;
}
return ans;
} ll sum(ll x,ll b)
{
ll t = 1;
ll tnum = 0;
ll tmp = x;
for(int i = 0; i < tot; i++)
{
if(tmp % prime[i] == 0)
{
tnum = 0;
while(tmp % prime[i] == 0)
{
tmp /= prime[i];
tnum ++;
}
ll M = (prime[i]-1)*9901;
t *= (pow_mod(prime[i],tnum*b+1,M)-1+M)/(prime[i]-1);
t %= 9901;
}
}
if(tmp > 1)
{
ll M = (tmp-1)*9901;
t *= (pow_mod(tmp,tnum*b+1,M)-1+M)/(tmp-1);
t %= 9901;
}
return t%9901;
} int main()
{
ll a,b;
get_prime();
while(scanf("%I64d%I64d",&a,&b) != EOF)
{
printf("%I64d\n",sum(a,b)%9901);
}
return 0;
}