POJ1845:Sumdiv(求因子和+逆元+质因子分解)好题

时间:2021-09-19 18:42:11

题目链接:http://poj.org/problem?id=1845

定义: 满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元。
为什么要有乘法逆元呢?
当我们要求(a/b) mod p的值,且a很大,无法直接求得a/b的值时,我们就要用到乘法逆元。 我们可以通过求b关于p的乘法逆元k,将a乘上k再模p,
即(a*k) mod p。其结果与(a/b) mod p等价。
 题目解析:让求a^b的因子和modk,因为是大数没法直接求,因为求因子和函数是乘性函数,所以首先要质因子分解,化成n=p1^a1*p2^a2*p3^a3****Ps^as,那么

s(n)=[(p1^a1+1 -1)/(p1-1)]*[(p2^a2+1 -1)/(p2-1)]*[(p3^a3+1 -1)/(p3-1)]***[(ps^as+1 -1)/(ps-1)];(因子和)

又因为s(n)%mod等于每一个部分取模,所以可以逐步求解,如求(p1^a1+1  -1)/(p1-1)%mod,在这里就要运用除法取模所以要用到乘法逆元的概念,

即(a/b) %p= ( a *b^(-1)%p) ,又因为(a^b) % p = ((a % p)^b) % p ,

所以(p1^a1+1  -1)/(p1-1)%mod==(((p1%mod)^a1+1 -1)%mod*(p1-1)^-1)%mod;

当然存在逆元的前提是gcd(a,p)==1;

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#define N 500010
#define mod 9901
typedef __int64 ll;
using namespace std;
ll a,b,X,Y;
ll ans[N],num[N],top;
ll pow(ll x,ll k)
{
ll t=;
while(k)
{
if(k&) t=((t%mod)*(x%mod))%mod;
k>>=;
x=((x%mod)*(x%mod))%mod;
}
return t;
}
void extend(__int64 A,__int64 B,__int64 &x1, __int64 &y1)
{
if(B==)
{
x1=;
y1=;
return ;
}
extend(B,A%B,x1,y1);
ll t=x1;
x1=y1;
y1=t-(A/B)*y1;
return ;
}
void solve()
{
ll sum=,A,xx;
for(int i=; i<top; i++)
{
if(ans[i]%mod==) continue;//关键的两个判断,关系到求逆元。 如果ans[i]%mod=0,那么有等级公式可以看出,原式小于0,所以也只能利用原式求,结果为1
if(ans[i]%mod==)//即mod|(ans[i]-1),因为ans[i]>=2,所以ans[i]不可能等于1,这是gcd(ans[i]-1,mod)==mod,不存在逆元,无法利用扩展欧几里得求逆元
{ //这时为(1+ans[i]^1+ans[i]^2+.....+ans[i]^num[i])%mod=(num[i]+1)%mod;
sum=(sum*(num[i]+))%mod;
continue;
}
A=pow(ans[i],num[i]+);
A=(A-)%mod;
extend(ans[i]-,mod,X,Y);//因为ans[i]为素数,ans[i]-1为偶数,所以ans[i]-1与9901互质
xx=(X%mod+mod)%mod;
A=((A%mod)*(xx%mod))%mod;
sum=(sum*A)%mod;
}
printf("%I64d\n",sum);
}
int main()
{
while(scanf("%I64d%I64d",&a,&b)!=EOF)
{
if(a==)
{
printf("0\n");
continue;
}
else if(a==||b==)
{
printf("1\n");
continue;
}
ll t=a;
top=;
memset(num,,sizeof(num));
for(int i=; i*i<=a; i++)
{
if(t%i==)
{
num[top]++;
ans[top]=i;
t/=i;
while(t%i==)
{
num[top]++;
t/=i;
}
top++;
}
}
if(t>)
{
num[top]++;
ans[top++]=t;
}
for(int i=; i<top; i++)
{
num[i]*=b;
}
solve();
}
return ;
}