最近公司用到,并且在找最合适的方案,希望大家多参与讨论和提出新方案。我和我的小伙伴们也讨论了这个主题,我受益匪浅啊……
博文示例:
今天分享的主题是:如何在高并发分布式系统中生成全局唯一Id。
但这篇博文实际上是“半分享半讨论”的博文:
1) 半分享是我将说下我所了解到的关于今天主题所涉及的几种方案。
2) 半讨论是我希望大家对各个方案都说说自己的见解,更加希望大家能提出更好的方案。(我还另外提问在此:http://q.cnblogs.com/q/53552/)
我了解的方案如下……………………………………………………………………
1、 使用数据库自增Id
优势:编码简单,无需考虑记录唯一标识的问题。
缺陷:
1) 在大表做水平分表时,就不能使用自增Id,因为Insert的记录插入到哪个分表依分表规则判定决定,若是自增Id,各个分表中Id各自增长就会重复
2) 在业务上操作父、子表(即关联表)插入时,需要在插入数据库之前获取max(id)用于标识父表和子表关系,若存在并发获取max(id)的情况,max(id)会同时被别的线程获取到。
3) DB数据记录都是可以根据ID号进行推测出来,对于一些数据敏感的场景,不建议采用
结论:适合小应用,无需分表,低并发。
2、 单独开一个数据库,获取全局唯一的自增序列号或各表的MaxId
使用MaxId表存储各表的MaxId值
专门一个数据库,记录各个表的MaxId值,建一个存储过程来取Id,逻辑大致为:开启事物,对于在表中不存在记录,直接返回一个默认值为1的键值,同时插入该条记录到table_key表中。而对于已存在的记录,key值直接在原来的key基础上加1更新到MaxId表中并返回key。(给table_key中为每个表初始化一条key为1的记录,这样就不用每次if来判断了---@辉_辉 提议)
使用此方案的问题是:每次的查询MaxId是一个性能损耗;
详细可参考:《使用MaxId表存储各表的MaxId值,以获取全局唯一Id》
我截取此文中的sql语法如下:
第一步:创建表
create table table_key
(
table_name varchar(50) not null primary key,
key_value int not null
) 第二步:创建存储过程来取自增ID
create procedure up_get_table_key
(
@table_name varchar(50),
@key_value int output
)
as
begin
begin tran
declare @key int --initialize the key with 1
set @key=1
--whether the specified table is exist
if not exists(select table_name from table_key where table_name=@table_name)
begin
insert into table_key values(@table_name,@key) --default key vlaue:1
end
-- step increase
else
begin
select @key=key_value from table_key with (nolock) where table_name=@table_name
set @key=@key+1
--update the key value by table name
update table_key set key_value=@key where table_name=@table_name
end
--set ouput value
set @key_value=@key --commit tran
commit tran
if @@error>0
rollback tran
end
2. (@乐活的CodeMonkey)提醒提高获取ID时存储过程的隔离级别,避免读取到未提交事务导致并发ID重复的问题。(MSSQL事务隔离级别详解)
eg:
SET TRANSACTION ISOLATION LEVEL READ COMMITTED
GO
BEGIN TRANSACTION;
……
GO
COMMIT TRANSACTION;
3. (@土豆烤肉)存储过程中不使用事物,一旦使用到事物性能就急剧下滑。直接使用UPDATE获取到的更新锁,即SQL SERVER会保证UPDATE的顺序执行。(已在用户过千万的并发系统中使用)
create procedure [dbo].[up_get_table_key]
(
@table_name varchar(50),
@key_value int output
)
as
begin SET NOCOUNT ON;
DECLARE @maxId INT
UPDATE table_key
SET @maxId = key_value,key_value = key_value + 1
WHERE table_name=@table_name
SELECT @maxId end
结论:适用中型应用,此方案解决了分表,关联表插入记录的问题。但是无法满足高并发性能要求。存在单点问题
改进方案:时间信息 + 缓存总的maxid (@wee616 提议)
从redis中用lpop指令取指定key值的数据。(lpop:移除并返回列表的头元素)
如果将指定key值的数据取完了,会触发初始化。
初次初始化:
1)用for update锁表,存储最小值1和最大值50到数据库中。
2)将这50个数字放入redis中。
下次初始化:
1)用for update锁表,存储最小值51和最大值100到数据库中。
2)将这50个数字放入redis中。
数据库每天有脚本定时清理这个表,每天都将最小值归0,避免最大值过大。
结论:适合大型应用,生成Id顺序性,可读性比较好。
3、 Sequence特性
这个特性在SQL Server 2012、Oracle中可用。这个特性是数据库级别的,允许在多个表之间共享序列号。它可以解决分表在同一个数据库的情况,但倘若分表放在不同数据库,那将共享不到此序列号。(eg:Sequence使用场景:你需要在多个表之间公用一个流水号。以往的做法是额外建立一个表,然后存储流水号)
相关Sequence特性资料:
SQL Server2012中的SequenceNumber尝试
SQL Server 2012 开发新功能——序列对象(Sequence)
Difference between Identity and Sequence in SQL Server 2012
结论:适用中型应用,此方案不能完全解决分表问题。
4、 通过数据库集群编号+集群内的自增类型两个字段共同组成唯一主键
优点:实现简单,维护也比较简单。
缺点:关联表操作相对比较复杂,需要两个字段。并且业务逻辑必须是一开始就设计为处理复合主键的逻辑,倘若是到了后期,由单主键转为复合主键那改动成本就太大了。
结论:适合大型应用,但需要业务逻辑配合处理复合主键。
5、 通过设置每个集群中自增 ID 起始点(auto_increment_offset),将各个集群的ID进行绝对的分段来实现全局唯一。当遇到某个集群数据增长过快后,通过命令调整下一个 ID 起始位置跳过可能存在的冲突。
优点:实现简单,且比较容易根据 ID 大小直接判断出数据处在哪个集群,对应用透明。缺点:维护相对较复杂,需要高度关注各个集群 ID 增长状况。
结论:适合大型应用,但需要高度关注各个集群 ID 增长状况。
6、 GUID(Globally Unique Identifier,全局唯一标识符)
GUID通常表示成32个16进制数字(0-9,A-F)组成的字符串,如:{21EC2020-3AEA-1069-A2DD-08002B30309D},它实质上是一个128位长的二进制整数。
GUID制定的算法中使用到用户的网卡MAC地址,以保证在计算机集群中生成唯一GUID;在相同计算机上随机生成两个相同GUID的可能性是非常小的,但并不为0。所以,用于生成GUID的算法通常都加入了非随机的参数(如时间),以保证这种重复的情况不会发生。
优点:GUID是最简单的方案,跨平台,跨语言,跨业务逻辑,全局唯一的Id,数据间同步、迁移都能简单实现。
缺点:
1) 存储占了32位,且无可读性;
2) 插入时因为GUID是无需的,在聚集索引的排序规则下可能移动大量的记录。
有两位园友主推GUID,无须顺序GUID方案原因如下:
@徐少侠 GUID无序在并发下效率高,并且一个数据页内添加新行,是在B树内增加,本质没有什么数据被移动,唯一可能的,是页填充因子满了,需要拆页。而GUID方案导致的拆页比顺序ID要低太多了
@无色 我们要明白id是什么,是身份标识,标识身份是id最大的业务逻辑,不要引入什么时间,什么用户业务逻辑,那是另外一个字段干的事,使用base64(guid,uuid),是通盘考虑,完全可以更好的兼容nosql,key-value存储。
结论:适合大型应用;生成的Id不够友好;占据了32位;
改进:
1) (@dudu告知)在SQL Server 2005中新增了NEWSEQUENTIALID函数。
详细请看:《理解newid()和newsequentialid()》
在指定计算机上创建大于先前通过该函数生成的任何 GUID 的 GUID。 newsequentialid 产生的新的值是有规律的,则索引B+树的变化是有规律的,就不会导致索引列插入时移动大量记录的问题。
但一旦服务器重新启动,其再次生成的GUID可能反而变小(但仍然保持唯一)。这在很大程度上提高了索引的性能,但并不能保证所生成的GUID一直增大。SQL的这个函数产生的GUID很简单就可以预测,因此不适合用于安全目的。
a) 只能做为数据库列的DEFAULT VALUE,不能执行类似SELECT NEWSEQUENTIALID()的语句.
b) 如何获得生成的GUID.
如果生成的GUID所在字段做为外键要被其他表使用,我们就需要得到这个生成的值。通常,PK是一个IDENTITY字段,我们可以在INSERT之后执行 SELECT SCOPE_IDENTITY()来获得新生成的ID,但是由于NEWSEQUENTIALID()不是一个INDETITY类型,这个办法是做不到了,而他本身又只能在默认值中使用,不可以事先SELECT好再插入,那么我们如何得到呢?有以下两种方法:
--1. 定义临时表变量
DECLARE @outputTable TABLE(ID uniqueidentifier)
INSERT INTO TABLE1(col1, col2)
OUTPUT INSERTED.ID INTO @outputTable
VALUES('value1', 'value2')
SELECT ID FROM @outputTable --2. 标记ID字段为ROWGUID(一个表只能有一个ROWGUID)
INSERT INTO TABLE1(col1, col2)
VALUES('value1', 'value2')
--在这里,ROWGUIDCOL其实相当于一个别名
SELECT ROWGUIDCOL FROM TABLE1
结论:适合大型应用,解决了GUID无序特性导致索引列插入移动大量记录的问题。但是在关联表插入时需要返回数据库中生成的GUID;生成的Id不够友好;占据了32位。
2) “COMB”(combined guid/timestamp,意思是:组合GUID/时间截)
(感谢:@ ethan-luo ,@lcs-帅 )
COMB数据类型的基本设计思路是这样的:既然GUID数据因毫无规律可言造成索引效率低下,影响了系统的性能,那么能不能通过组合的方式,保留GUID的10个字节,用另6个字节表示GUID生成的时间(DateTime),这样我们将时间信息与GUID组合起来,在保留GUID的唯一性的同时增加了有序性,以此来提高索引效率。
在NHibernate中,COMB型主键的生成代码如下所示:
/// <summary> /// Generate a new <see cref="Guid"/> using the comb algorithm.
/// </summary>
private Guid GenerateComb()
{
byte[] guidArray = Guid.NewGuid().ToByteArray(); DateTime baseDate = new DateTime(1900, 1, 1);
DateTime now = DateTime.Now; // Get the days and milliseconds which will be used to build
//the byte string
TimeSpan days = new TimeSpan(now.Ticks - baseDate.Ticks);
TimeSpan msecs = now.TimeOfDay; // Convert to a byte array
// Note that SQL Server is accurate to 1/300th of a
// millisecond so we divide by 3.333333
byte[] daysArray = BitConverter.GetBytes(days.Days);
byte[] msecsArray = BitConverter.GetBytes((long)
(msecs.TotalMilliseconds / 3.333333)); // Reverse the bytes to match SQL Servers ordering
Array.Reverse(daysArray);
Array.Reverse(msecsArray); // Copy the bytes into the guid
Array.Copy(daysArray, daysArray.Length - 2, guidArray,
guidArray.Length - 6, 2);
Array.Copy(msecsArray, msecsArray.Length - 4, guidArray,
guidArray.Length - 4, 4); return new Guid(guidArray);
}
结论:适合大型应用。即保留GUID的唯一性的同时增加了GUID有序性,提高了索引效率;解决了关联表业务问题;生成的Id不够友好;占据了32位。
3) 长度问题,使用Base64或Ascii85编码解决。(要注意的是上述有序性方案在进行编码后也会变得无序)
如:
GUID:{3F2504E0-4F89-11D3-9A0C-0305E82C3301}
当需要使用更少的字符表示GUID时,可能会使用Base64或Ascii85编码。Base64编码的GUID有22-24个字符,如:
7QDBkvCA1+B9K/U0vrQx1A
7QDBkvCA1+B9K/U0vrQx1A==
Ascii85编码后是20个字符,如:
5:$Hj:Pf\4RLB9%kU\Lj
代码如:
Guid guid = Guid.NewGuid();
byte[] buffer = guid.ToByteArray();
var shortGuid = Convert.ToBase64String(buffer);
结论:适合大型应用,缩短GUID的长度。生成的Id不够友好;
7、 GUID TO Int64
对于GUID的可读性,有园友给出如下方案:(感谢:@黑色的羽翼)
即将GUID转为了19位数字,数字反馈给客户可以一定程度上缓解友好性问题。EG:
GUID: cfdab168-211d-41e6-8634-ef5ba6502a22 (不友好)
Int64: 5717212979449746068 (友好性还行)
不过我的小伙伴说ToInt64后就不唯一了。因此我专门写了个并发测试程序,后文将给出测试结果截图及代码简单说明。
(唯一性、业务适合性是可以权衡的,这个唯一性肯定比不过GUID的,一般程序上都会安排错误处理机制,比如异常后执行一次重插的方案……)
结论:适合大型应用,生成相对友好的Id(纯数字)。
8、 自己写编码规则
优点:全局唯一Id,符合业务后续长远的发展(可能具体业务需要自己的编码规则等等)。
缺陷:根据具体编码规则实现而不同;还要考虑倘若主键在业务上允许改变的,会带来外键同步的麻烦。
我这边写两个编码规则方案:(可能不唯一,只是个人方案,也请大家提出自己的编码规则)
1) 12位年月日时分秒+5位随机码+3位服务器编码 (这样就完全单机完成生成全局唯一编码)---共20位
缺陷:因为附带随机码,所以编码缺少一定的顺序感。(生成高唯一性随机码的方案稍后给给出程序)
2) 12位年月日时分秒+5位流水码+3位服务器编码 (这样流水码就需要结合数据库和缓存)---共20位 (将影响顺序权重大的“流水码”放前面,影响顺序权重小的服务器编码放后)
缺陷:因为使用到流水码,流水码的生成必然会遇到和MaxId、序列表、Sequence方案中类似的问题
(为什么没有毫秒?毫秒也不具备业务可读性,我改用5位随机码、流水码代替,推测1秒内应该不会下99999[五位]条语法)
结论:适合大型应用,从业务上来说,有一个规则的编码能体现产品的专业成度。
GUID生成Int64值后是否还具有唯一性测试
测试环境
主要测试思路:
1. 根据内核数使用多线程并发生成Guid后再转为Int64位值,放入集合A、B、…N,多少个线程就有多少个集合。
2. 再使用Dictionary字典高效查key的特性,将步骤1中生成的多个集合全部加到Dictionary中,看是否有重复值。
示例注解:测了 Dictionary<long,bool> 最大容量就在5999470左右,所以每次并发生成的唯一值总数控制在此范围内,让测试达到最有效话。
主要代码:
for (int i = 0; i <= Environment.ProcessorCount - 1; i++)
{
ThreadPool.QueueUserWorkItem(
(list) =>
{
List<long> tempList = list as List<long>;
for (int j = 1; j < listLength; j++)
{
byte[] buffer = Guid.NewGuid().ToByteArray();
tempList.Add(BitConverter.ToInt64(buffer, 0));
}
barrier.SignalAndWait();
}, totalList[i]);
}
测试数据截图:
数据一(循环1000次,测试数:1000*5999470)
数据二(循环5000次,测试数:5000*5999470)--跑了一个晚上……
感谢@Justany_WhiteSnow的专业回答:(大家分析下,我数学比较差,稍后再说自己的理解)
GUID桶数量:(2 ^ 4) ^ 32 = 2 ^ 128
Int64桶数量: 2 ^ 64
倘若每个桶的机会是均等的,则每个桶的GUID数量为:
(2 ^ 128) / (2 ^ 64) = 2 ^ 64 = 18446744073709551616
也就是说,其实重复的机会是有的,只是概率问题。
楼主测试数是29997350000,发生重复的概率是:
1 - ((1 - (1 / (2 ^ 64))) ^ 29997350000) ≈ 1 - ((1 - 1 / (2 ^ 64)) ^ (2 ^ 32)) < 1 - 1 + 1 / (2 ^ 32) = 1 / (2 ^ 32) ≈ 2.3283064e-10
(唯一性、业务适合性是可以权衡的,这个唯一性肯定比不过GUID的,一般程序上都会安排错误处理机制,比如异常后执行一次重插的方案……)
(唯一性、业务适合性是可以权衡的,这个唯一性肯定比不过GUID的,一般程序上都会安排错误处理机制,比如异常后执行一次重插的方案……)
结论:GUID转为Int64值后,也具有高唯一性,可以使用与项目中。
Random生成高唯一性随机码
我使用了五种Random生成方案,要Random生成唯一主要因素就是种子参数要唯一。
不过该测试是在单线程下的,多线程应使用不同的Random实例,所以对结果影响不会太大。
1. 使用Environment.TickCount做为Random参数(即Random的默认参数),重复性最大。
2. 使用DateTime.Now.Ticks做为Random参数,存在重复。
3. 使用unchecked((int)DateTime.Now.Ticks)做为Random参数,存在重复。
4. 使用Guid.NewGuid().GetHashCode()做为random参数,测试不存在重复(或存在性极小)。
5. 使用RNGCryptoServiceProvider做为random参数,测试不存在重复(或存在性极小)。
即:
static int GetRandomSeed()
{
byte[] bytes = new byte[4];
System.Security.Cryptography.RNGCryptoServiceProvider rng
= new System.Security.Cryptography.RNGCryptoServiceProvider();
rng.GetBytes(bytes);
return BitConverter.ToInt32(bytes, 0);
}
测试结果:
结论:随机码使用RNGCryptoServiceProvider或Guid.NewGuid().GetHashCode()生成的唯一性较高。
一些精彩评论(部分更新到原博文对应的地方)
一、
数据库文件体积只是一个参考值,可水平扩展系统性能(如nosql,缓存系统)并不和文件体积有高指数的线性相关。
如taobao/qq的系统比拼byte系统慢,关键在于索引的命中率,缓存,系统的水平扩展。
如果数据库很少,你搞这么多byte能提高性能?
如果数据库很大,你搞这么多byte不兼容索引不兼容缓存,不是害自已吗?
如果数据库要求伸缩性,你搞这么多byte,需要不断改程序,不是自找苦吗?
如果数据库要求移植性,你搞这么多byte,移植起来不如重新设计,这是不是很多公司不断加班的原因?
不依赖于数据存储系统是分层设计思想的精华,实现战略性能最大化,而不是追求战术单机性能最大化。
不要迷信数据库性能,不要迷信三范式,不要使用外键,不要使用byte,不要使用自增id,不要使用存储过程,不要使用内部函数,不要使用非标准sql,存储系统只做存储系统的事。当出现系统性能时,如此设计的数据库可以更好的实现迁移数据库(如mysql->oracle),实现nosql改造((mongodb/hadoop),实现key-value缓存(redis,memcache)。
二、
很多程序员有对性能认识有误区,如使用存储过程代替正常程序,其实使用存储过程只是追求单服务器的高性能,当需要服务器水平扩展时,存储过程中的业务逻辑就是你的噩运。(web服务器可以简单伸缩,但是数据库伸缩比较复杂)
三、
除数字日期,能用字符串存储的字段尽量使用字符串存储,不要为节省那不值钱的1个g的硬盘而使用类似字节之类的字段,进而大幅牺牲系统可伸缩性和可扩展性。
不要为了追求所谓的性能,引入byte,使用byte注定是短命和难于移植,想想为什么html,email一直流行,因为它们使用的是字符串表示法,只要有人类永远都能解析,如email把二进制转成base64存储。除了实时系统,视频外,建议使用字符串来存储数据,系统性能的关键在于分布式,在于水平扩展。
本次博文到此结束,希望大家对本次主题“如何在高并发分布式系统中生成全局唯一Id”多提出自己宝贵的意见。另外看着感觉舒服,还请多帮推荐…推荐……
推荐阅读
如何在高并发分布式系统中生成全局唯一Id的更多相关文章
-
如何在高并发分布式系统中生成全局唯一Id(转)
http://www.cnblogs.com/heyuquan/p/global-guid-identity-maxId.html 又一个多月没冒泡了,其实最近学了些东西,但是没有安排时间整理成博文, ...
-
(转)如何在高并发分布式系统中生成全局唯一Id
又一个多月没冒泡了,其实最近学了些东西,但是没有安排时间整理成博文,后续再奉上.最近还写了一个发邮件的组件以及性能测试请看 <NET开发邮件发送功能的全面教程(含邮件组件源码)> ,还弄了 ...
-
高并发分布式系统中生成全局唯一Id汇总
数据在分片时,典型的是分库分表,就有一个全局ID生成的问题.单纯的生成全局ID并不是什么难题,但是生成的ID通常要满足分片的一些要求: 1 不能有单点故障. 2 以时间为序,或者ID里包含时间 ...
-
高并发分布式系统中生成全局唯一(订单号)Id js返回上一页并刷新、返回上一页、自动刷新页面 父页面操作嵌套iframe子页面的HTML标签元素 .net判断System.Data.DataRow中是否包含某列 .Net使用system.Security.Cryptography.RNGCryptoServiceProvider类与System.Random类生成随机数
高并发分布式系统中生成全局唯一(订单号)Id 1.GUID数据因毫无规律可言造成索引效率低下,影响了系统的性能,那么通过组合的方式,保留GUID的10个字节,用另6个字节表示GUID生成的时间(D ...
-
高并发分布式系统中生成全局唯一(订单号)Id
1.GUID数据因毫无规律可言造成索引效率低下,影响了系统的性能,那么通过组合的方式,保留GUID的10个字节,用另6个字节表示GUID生成的时间(DateTime),这样我们将时间信息与GUID组合 ...
-
分布式系统中生成全局ID的总结与思考
世间万物,都有自己唯一的标识,比如人,每个人都有自己的指纹(白夜追凶给我科普的,同卵双胞胎DNA一样,但指纹不一样).又如中国人,每个中国人有自己的身份证.对于计算机,很多时候,也需要为每一份数据生成 ...
-
高并发分布式环境中获取全局唯一ID[分布式数据库全局唯一主键生成]
需求说明 在过去单机系统中,生成唯一ID比较简单,可以使用MySQL的自增主键或者Oracle中的sequence, 在现在的大型高并发分布式系统中,以上策略就会有问题了,因为不同的数据库会部署到不同 ...
-
常见的生成全局唯一id有哪些?他们各有什么优缺点?
分布式系统中全局唯一id是我们经常用到的,生成全局id方法由很多,我们选择的时候也比较纠结.每种方式都有各自的使用场景,如果我们熟悉各种方式及优缺点,使用的时候才会更方便.下面我们就一起来看一下常见的 ...
-
面试官:如何在分布式场景下生成全局唯一 ID?
在分布式系统中,有一些场景需要使用全局唯一 ID ,可以和业务场景有关,比如支付流水号,也可以和业务场景无关,比如分库分表后需要有一个全局唯一 ID,或者用作事务版本号.分布式链路追踪等等,好的全局唯 ...
随机推荐
-
【腾讯Bugly干货分享】动态链接库加载原理及HotFix方案介绍
本文来自于腾讯bugly开发者社区,非经作者同意,请勿转载,原文地址:http://dev.qq.com/topic/57bec216d81f2415515d3e9c 作者:陈昱全 引言 随着项目中动 ...
-
去掉win10桌面小图标
参考:http://bbs.kafan.cn/thread-1843802-1-1.html
-
Robot Framework--03 案例及资源区
转自:http://blog.csdn.net/tulituqi/article/details/7585387 这个区域是我们案例结构设计的一个关键区域,这里可以清晰的看到我们整个工程的结构. 还记 ...
-
Android 背景图片重复平铺
有时候我们需要将一个图片横向或者纵向的平铺(重复循环),这个时候我们需要创建一个xml文件,如下: <?xml version ="1.0" encoding =" ...
-
CSS hack样式兼容模式收藏
part1 —— 浏览器测试仪器,测试您现在使用的浏览器类型 IE6 IE7 IE8 Firefox Opera Safari (Chrome) IE6 IE7 IE8 ...
-
android performClick使用
performClick 是使用代码主动去调用控件的点击事件(模拟人手去触摸控件) ----------------------------------------- boolean android. ...
-
Hibernate 框架基本知识
QTP:Quick Test Pressional 1,Hibernate是一个优秀的java持久化层解决方案,是当今主流的对象-关系映射(ORM,ObjectRelationalMapping)工具 ...
-
iview-cli 项目、iView admin 跨域问题解决方案
在build 目录的 webpack.dev.config.js 目录中 module.exports = merge(webpackBaseConfig, { devtool: '#source-m ...
-
vue-scroller的使用
一 安装 使用npm 安装 npm install vue-scroller -S 二 引入 https://www.jianshu.com/p/a39f5276ff0b https://www.np ...
-
搭建docker registry (htpasswd 认证)
1,拉取docker registry 镜像 docker pull registry 2,创建证书存放目录 mkdir -p /home/registry 3,生成CA证书Edit your /et ...