分布式存储中,生成全局唯一ID的几种方案

时间:2022-09-23 11:58:01
1.自定义生成规则
eg:
3位服务器编码+15位年月日时分秒毫秒+3位表编码+4位随机码 (这样就完全单机完成编码任务)---共25位
3位服务器编码+15位年月日时分秒毫秒+3位表编码+4流水码 (这样流水码就需要结合数据库和缓存)---共25位
2.单独开一个数据库,获取全局唯一的自增序列或个表的MaxId
eg:
Flickr 方案 --- http://blog.csdn.net/taotao4/article/details/46520053
replace into + 奇偶2个数据库主键生成服务器(防止单点故障)

数据在分片时,典型的是分库分表,就有一个全局ID生成的问题。
单纯的生成全局ID并不是什么难题,但是生成的ID通常要满足分片的一些要求:
   1 不能有单点故障。
   2 以时间为序,或者ID里包含时间。这样一是可以少一个索引,二是冷热数据容易分离。
   3 可以控制ShardingId。比如某一个用户的文章要放在同一个分片内,这样查询效率高,修改也容易。
   4 不要太长,最好64bit。使用long比较好操作,如果是96bit,那就要各种移位相当的不方便,还有可能有些组件不能支持这么大的ID。

一 twitter 
twitter在把存储系统从MySQL迁移到Cassandra的过程中由于Cassandra没有顺序ID生成机制,于是自己开发了一套全局唯一ID生成服务:Snowflake。
1 41位的时间序列(精确到毫秒,41位的长度可以使用69年)
2 10位的机器标识(10位的长度最多支持部署1024个节点) 
3 12位的计数顺序号(12位的计数顺序号支持每个节点每毫秒产生4096个ID序号) 最高位是符号位,始终为0。
优点:高性能,低延迟;独立的应用;按时间有序。 缺点:需要独立的开发和部署。

原理

分布式存储中,生成全局唯一ID的几种方案

时间戳

这里时间戳的细度是毫秒级,具体代码如下,建议使用64位Linux系统机器,因为有vdso,gettimeofday()在用户态就可以完成操作,减少了进入内核态的损耗。

<span style="font-size:18px;"><strong><code class="hljs cpp" style="display: block; padding: 0.5em; color: rgb(0, 0, 0); background: rgb(255, 255, 255);"><span class="hljs-keyword" style="color:#0088;">uint64_t</span> generateStamp()
{
    timeval tv;
    gettimeofday(&tv, <span class="hljs-number" style="color:#06666;">0</span>);
    <span class="hljs-keyword" style="color:#0088;">return</span> (<span class="hljs-keyword" style="color:#0088;">uint64_t</span>)tv.tv_sec * <span class="hljs-number" style="color:#06666;">1000</span> + (<span class="hljs-keyword" style="color:#0088;">uint64_t</span>)tv.tv_usec / <span class="hljs-number" style="color:#06666;">1000</span>;
}</code></strong></span>

默认情况下有41个bit可以供使用,那么一共有T(1llu << 41)毫秒供你使用分配,年份 = T / (3600 * 24 * 365 * 1000) = 69.7年。如果你只给时间戳分配39个bit使用,那么根据同样的算法最后年份 = 17.4年。

工作机器ID

严格意义上来说这个bit段的使用可以是进程级,机器级的话你可以使用MAC地址来唯一标示工作机器,工作进程级可以使用IP+Path来区分工作进程。如果工作机器比较少,可以使用配置文件来设置这个id是一个不错的选择,如果机器过多配置文件的维护是一个灾难性的事情。

这里的解决方案是需要一个工作id分配的进程,可以使用自己编写一个简单进程来记录分配id,或者利用Mysql auto_increment机制也可以达到效果。

分布式存储中,生成全局唯一ID的几种方案

工作进程与工作id分配器只是在工作进程启动的时候交互一次,然后工作进程可以自行将分配的id数据落文件,下一次启动直接读取文件里的id使用。


PS:这个工作机器id的bit段也可以进一步拆分,比如用前5个bit标记进程id,后5个bit标记线程id之类:D

序列号

序列号就是一系列的自增id(多线程建议使用atomic),为了处理在同一毫秒内需要给多条消息分配id,若同一毫秒把序列号用完了,则“等待至下一毫秒”。

<span style="font-size:18px;"><strong><code class="hljs nginx" style="display: block; padding: 0.5em; color: rgb(0, 0, 0); background: rgb(255, 255, 255);"><span class="hljs-attribute">uint64_t</span> waitNextMs(uint64_t <span class="hljs-literal" style="color:#06666;">last</span>Stamp)
{
    <span class="hljs-attribute">uint64_t</span> cur = <span class="hljs-number" style="color:#06666;">0</span>;
    <span class="hljs-section">do</span> {
        <span class="hljs-attribute">cur</span> = generateStamp();
    } <span class="hljs-attribute">while</span> (cur <= <span class="hljs-literal" style="color:#06666;">last</span>Stamp);
    <span class="hljs-attribute">return</span> cur;
}</code></strong></span>

总体来说,是一个很高效很方便的GUID产生算法,一个int64_t字段就可以胜任,不像现在主流128bit的GUID算法,即使无法保证严格的id序列性,但是对于特定的业务,比如用做游戏服务器端的GUID产生会很方便。另外,在多线程的环境下,序列号使用atomic可以在代码实现上有效减少锁的密度。


最高位是符号位,始终为0。

优点:高性能,低延迟;独立的应用;按时间有序。

缺点:需要独立的开发和部署。


java 实现代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
public class IdWorker {
 
private final long workerId;
private final static long twepoch = 1288834974657L;
private long sequence = 0L;
private final static long workerIdBits = 4L;
public final static long maxWorkerId = -1L ^ -1L << workerIdBits;
private final static long sequenceBits = 10L;
private final static long workerIdShift = sequenceBits;
private final static long timestampLeftShift = sequenceBits + workerIdBits;
public final static long sequenceMask = -1L ^ -1L << sequenceBits;
private long lastTimestamp = -1L;
public IdWorker(final long workerId) {
super();
if (workerId > this.maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format(
"worker
Id can't be greater than %d or less than 0"
,
this.maxWorkerId));
}
this.workerId = workerId;
}
public synchronized long nextId() {
long timestamp = this.timeGen();
if (this.lastTimestamp == timestamp) {
this.sequence = (this.sequence + 1) & this.sequenceMask;
if (this.sequence == 0) {
System.out.println("###########" + sequenceMask);
timestamp
this.tilNextMillis(this.lastTimestamp);
}
else {
this.sequence = 0;
}
if (timestamp < this.lastTimestamp) {
try {
throw new Exception(
String.format(
"Clock
moved backwards. Refusing to generate id for %d milliseconds"
,
this.lastTimestamp - timestamp));
catch (Exception e) {
e.printStackTrace();
}
}
 
this.lastTimestamp = timestamp;
long nextId = ((timestamp - twepoch << timestampLeftShift))
|
(
this.workerId << this.workerIdShift) | (this.sequence);
System.out.println("timestamp:" + timestamp + ",timestampLeftShift:"
+
timestampLeftShift + 
",nextId:" + nextId + ",workerId:"
+
workerId + 
",sequence:" + sequence);
return nextId;
}
 
private long tilNextMillis(final long lastTimestamp) {
long timestamp = this.timeGen();
while (timestamp <= lastTimestamp) {
timestamp
this.timeGen();
}
return timestamp;
}
 
private long timeGen() {
return System.currentTimeMillis();
}
 
 
public static void main(String[] args){
IdWorker
worker2 = 
new IdWorker(2);
System.out.println(worker2.nextId());
}
 
}

2 来自Flicker的解决方案
因为MySQL本身支持auto_increment操作,很自然地,我们会想到借助这个特性来实现这个功能。
Flicker在解决全局ID生成方案里就采用了MySQL自增长ID的机制(auto_increment + replace into + MyISAM)。一个生成64位ID方案具体就是这样的: 
先创建单独的数据库(eg:ticket),然后创建一个表:

1
2
3
4
5
6
CREATE TABLE Tickets64 (
id bigint(20) unsigned NOT NULL auto_increment,
stub char(1) NOT NULL default '',
PRIMARY KEY (id),
UNIQUE KEY stub (stub)
)
ENGINE=MyISAM

  

当我们插入记录后,执行SELECT * from Tickets64,查询结果就是这样的:

+-------------------+------+
| id | stub |
+-------------------+------+
| 72157623227190423 | a |
+-------------------+------+
在我们的应用端需要做下面这两个操作,在一个事务会话里提交:

1
2
REPLACE INTO Tickets64 (stub) VALUES ('a');
SELECT LAST_INSERT_ID();

这样我们就能拿到不断增长且不重复的ID了。 
到上面为止,我们只是在单台数据库上生成ID,从高可用角度考虑,接下来就要解决单点故障问题:Flicker启用了两台数据库服务器来生成ID,通过区分auto_increment的起始值和步长来生成奇偶数的ID。

1
2
3
4
5
6
7
TicketServer1:
auto-increment-increment
= 2
auto-increment-offset
= 1
 
TicketServer2:
auto-increment-increment
= 2
auto-increment-offset
= 2

最后,在客户端只需要通过轮询方式取ID就可以了。

充分借助数据库的自增ID机制,提供高可靠性,生成的ID有序。
缺点:占用两个独立的MySQL实例,有些浪费资源,成本较高。

三 UUID

UUID生成的是length=32的16进制格式的字符串,如果回退为byte数组共16个byte元素,即UUID是一个128bit长的数字,
一般用16进制表示。
算法的核心思想是结合机器的网卡、当地时间、一个随即数来生成UUID。
从理论上讲,如果一台机器每秒产生10000000个GUID,则可以保证(概率意义上)3240年不重复
优点:
(1)本地生成ID,不需要进行远程调用,时延低
(2)扩展性好,基本可以认为没有性能上限
缺点:
(1)无法保证趋势递增
(2)uuid过长,往往用字符串表示,作为主键建立索引查询效率低,常见优化方案为“转化为两个uint64整数存储”或者“折半存储”(折半后不能保证唯一性)
四 基于Redis的分布式ID生成器
首先,要知道redis的EVAL,EVALSHA命令:
原理

利用redis的lua脚本执行功能,在每个节点上通过lua脚本生成唯一ID。 
生成的ID是64位的:

使用41 bit来存放时间,精确到毫秒,可以使用41年。
使用12 bit来存放逻辑分片ID,最大分片ID是4095
使用10 bit来存放自增长ID,意味着每个节点,每毫秒最多可以生成1024个ID
比如GTM时间 Fri Mar 13 10:00:00 CST 2015 ,它的距1970年的毫秒数是 1426212000000,假定分片ID是53,自增长序列是4,则生成的ID是:

5981966696448054276 = 1426212000000 << 22 + 53 << 10 + 41
redis提供了TIME命令,可以取得redis服务器上的秒数和微秒数。因些lua脚本返回的是一个四元组。

second, microSecond, partition, seq
客户端要自己处理,生成最终ID。

((second * 1000 + microSecond / 1000) << (12 + 10)) + (shardId << 10) + seq;
 MongoDB文档(Document)全局唯一ID

为了考虑分布式,“_id”要求不同的机器都能用全局唯一的同种方法方便的生成它。因此不能使用自增主键(需要多台服务器进行同步,既费时又费力),
因此选用了生成ObjectId对象的方法。

ObjectId使用12字节的存储空间,其生成方式如下:

|0|1|2|3|4|5|6 |7|8|9|10|11|

|时间戳 |机器ID|PID|计数器 |

前四个字节时间戳是从标准纪元开始的时间戳,单位为秒,有如下特性:

 1 时间戳与后边5个字节一块,保证秒级别的唯一性;
 2 保证插入顺序大致按时间排序;
 3 隐含了文档创建时间;
 4 时间戳的实际值并不重要,不需要对服务器之间的时间进行同步(因为加上机器ID和进程ID已保证此值唯一,唯一性是ObjectId的最终诉求)。

机器ID是服务器主机标识,通常是机器主机名的散列值。

同一台机器上可以运行多个mongod实例,因此也需要加入进程标识符PID。

前9个字节保证了同一秒钟不同机器不同进程产生的ObjectId的唯一性。后三个字节是一个自动增加的计数器(一个mongod进程需要一个全局的计数器),保证同一秒的ObjectId是唯一的。同一秒钟最多允许每个进程拥有(256^3 = 16777216)个不同的ObjectId。

总结一下:时间戳保证秒级唯一,机器ID保证设计时考虑分布式,避免时钟同步,PID保证同一台服务器运行多个mongod实例时的唯一性,最后的计数器保证同一秒内的唯一性(选用几个字节既要考虑存储的经济性,也要考虑并发性能的上限)。

"_id"既可以在服务器端生成也可以在客户端生成,在客户端生成可以降低服务器端的压力。


参考:

http://www.cnblogs.com/heyuquan/archive/2013/08/16/global-guid-identity-maxId.html