报错
NameError Traceback (most recent call last)
Cell In[20], line 4
2 for epoch in range(num_epochs):
3 if torch.cuda.is_available():
----> 4 inputs = Variable(x_train).cuda()
5 target = Variable(y_train).cuda()
6 else:
NameError: name 'Variable' is not defined
解答
在PyTorch中,Variable
类在较早的版本中用于包装张量,但从PyTorch 0.4版本开始,推荐使用torch.Tensor
和torch.autograd.Variable
。在PyTorch 0.4版本之后,Variable
类已经被torch.Tensor
类取代,并且在较新的版本中已经被弃用。
import torch
import torch.nn as nn
import torch.optim as optim
# 假设你已经定义了模型和优化器
# model = ...
# optimizer = ...
# 假设x_train和y_train是已经准备好的训练数据
# x_train = ...
# y_train = ...
# 将数据转换为torch.Tensor
x_train_tensor = torch.tensor(x_train, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train, dtype=torch.float32)
# 检查是否有可用的GPU,并将张量移动到GPU上
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
x_train_tensor = x_train_tensor.to(device)
y_train_tensor = y_train_tensor.to(device)
# 现在你可以使用x_train_tensor和y_train_tensor作为模型的输入
# 例如,在训练循环中:
# for epoch in range(num_epochs):
# optimizer.zero_grad()
# outputs = model(x_train_tensor)
# loss = criterion(outputs, y_train_tensor)
# loss.backward()
# optimizer.step()
在这个修改后的代码中,使用torch.tensor
来创建张量。