用python实现K均值算法

时间:2022-03-06 22:16:34
import numpy as np
x = np.random.randint(1,60,[30,1])
y = np.zeros(20)
k = 3
#1选取数据空间中的K个对象作为初始中心,每个对象代表一个聚类中心;
def initcen(x,k):
    return x[:k]
#2对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离它们最近的聚类中心(最相似)所对应的类;
def nearest(kc,i):
    d = abs(kc-i)
    w = np.where(d == np.min(d))
    return w[0][0]

def xclassify(x,y,kc):
    for i in range(x.shape[0]):
        y[i] = nearest(kc,x[i])
        return y
#3更新聚类中心:将每个类别中所有对象所对应的均值作为该类别的聚类中心,计算目标函数的值;

def kcmean(x,y,kc,k):
    l = list(kc)
    flag = False
    for c in range(k):
        m = np.where(y ==0)
        n = np.mean(x[m])
        if l[j] != n:
            l[j] = n
            flag = True
            print(l,flag)
    return (np.array(l),flag)
#4判断聚类中心和目标函数的值是否发生改变,若不变,则输出结果,若改变,则返回2)
kc = initcen(x,k)

flag = True
print(x,y,kc,flag)
while flag:
    y = xclassify(x,y,kc)
    kc,flag = kcmean(x,y,kc,k)
print(y,kc)

用python实现K均值算法

 

# 用鸢尾花花瓣作分析
x = np.array(iris_length)
y = np.zeros(x.shape[0])
kc = initcen(x,3)
flag = True
while flag:
    y = xclassify(x,y,kc)
    kc,flag = kcmean(x,y,kc,3)
print(kc,flag)

# 分析鸢尾花花瓣长度的数据,并用散点图表示出来
import matplotlib.pyplot as plt
plt.scatter(iris_length, iris_length, marker='p', c=y, alpha=0.5, linewidths=4, cmap='Paired')
plt.show()

用python实现K均值算法

 

#4鸢尾花完整数据做聚类并用散点图显示.

from sklearn.datasets import load_iris
iris=load_iris()
x=iris.data

from sklearn.cluster import KMeans
eat=KMeans(n_clusters=3)
eat.fit(x)
eat.cluster_centers_
y=eat.predict(x)
y

import matplotlib.pyplot as plt
plt.scatter(x[:,0],x[:,1])
plt.show()

 用python实现K均值算法