CF101D Castle 树形DP、贪心

时间:2024-04-26 02:36:51

题目传送门

题意:给出一个有$N$个点的树,你最开始在$1$号点,经过第$i$条边需要花费$w_i$的时间。每条边只能被经过$2$次。求出到达除$1$号点外所有点的最早时间的最小平均值。$N \leq 10^5 , w \leq 1000$


设$f_i$表示以第$i$个点为子树的最小总时间,考虑由儿子向父亲合并,额外定义$dis_i$为$i$到其父亲的边的边权,$t_i$表示从$t$的父亲走完根节点为$t$的子树再回到$t$的时间,也就等于$(\text{子树边权和+与父亲相连的边的边权})\times 2$,再定义$size_i$表示以$i$为根节点的子树的点数。可以$t_i$与$size_i$都是很容易从儿子向父亲合并的。

设我们正在算点$x$的答案,其儿子为$y_1,y_2...y_k$,且它们的答案已经算出来了。那么它的父亲的答案也就是$\sum\limits_{i=1}^k (f_{y_i}+dis_i \times size_i) + \sum\limits_{i=1}^k t_{p_i} \times (size_x - 1 - \sum\limits_{j=1}^i size_{p_i})$,其中$p_1,p_2...p_k$是一个$y_1,y_2...y_k$的排列,因为子树的选择是无序的,而在选择某个子树的时候,剩下没有选的所有点都需要等待这棵子树遍历完。

那么现在我们的任务转变为了找到一个最优的$p_1,p_2...p_k$的选择。考虑这个排列可能与排序有关,所以我们使用邻项交换的方法分析是否具有贪心策略。考虑相邻两个元素$p_i,p_i+1$,因为交换对于其他元素的答案是没有影响的,所以我们只需要考虑$p_i$与$p_{i+1}$的差别,将其他的设为$W$。

当我们的顺序是$p_i,p_{i+1}$时,答案是$f_{p_i}+t_{p_i} \times size_{p_{i+1}}+f_{p_{i+1}}+W$,而当顺序为$p_{i+1},p_i$时答案为$f_{p_{i+1}}+t_{p_{i+1}} \times size_{p_i}+f_{p_i}+W$。我们令第一种方案优于第二种方案,所以$f_{p_i}+t_{p_i} \times size_{p_{i+1}}+f_{p_{i+1}}+W < f_{p_{i+1}}+t_{p_{i+1}} \times size_{p_i}+f_{p_i}+W$,可以得到$t_{p_i} \times size_{p_{i+1}} < t_{p_{i+1}} \times size_{p_i}$。所以我们使用这个公式进行排序,就可以得到最优的方案。

 #include<bits/stdc++.h>
 #define ld long double
 #define MAXN 500010
 #define int long long
 using namespace std;

 inline int read(){
     ;
     ;
     char c = getchar();
     while(!isdigit(c)){
         if(c == '-')
             f = ;
         c = getchar();
     }
     while(isdigit(c)){
         a = (a << ) + (a << ) + (c ^ ');
         c = getchar();
     }
     return f ? -a : a;
 }

 struct Edge{
     int end , upEd , w;
 }Ed[MAXN];
 int head[MAXN] , siz[MAXN] , T[MAXN] , N , cntEd , forC;
 ld dp[MAXN];

 bool cmp(int a , int b){
     return T[a] * siz[b] < T[b] * siz[a];
 }

 inline void addEd(int a , int b , int c){
     Ed[++cntEd].end = b;
     Ed[cntEd].upEd = head[a];
     Ed[cntEd].w = c;
     head[a] = cntEd;
 }

 void dfs(int now){
     siz[now] = ;
     vector < int > v;
     for(int i = head[now] ; i ; i = Ed[i].upEd)
         if(!siz[Ed[i].end]){
             dfs(Ed[i].end);
             siz[now] += siz[Ed[i].end];
             T[Ed[i].end] += Ed[i].w << ;
             dp[Ed[i].end] += Ed[i].w * siz[Ed[i].end];
             v.push_back(Ed[i].end);
         }
     sort(v.begin() , v.end() , cmp);
      ; i < v.size() ; i++){
         dp[now] += T[now] * siz[v[i]] + dp[v[i]];
         T[now] += T[v[i]];
     }
 }
 main(){
     N = read();
      ; i < N ; i++){
         int a = read() , b = read() , c = read();
         addEd(a , b , c);
         addEd(b , a , c);
     }
     dfs();
     cout << ) << dp[] * );
     ;
 }