kruskal算法基本思路:先对边按权重从小到大排序,先选取权重最小的一条边,如果该边的两个节点均为不同的分量,则加入到最小生成树,否则计算下一条边,直到遍历完所有的边。
prim算法基本思路:所有节点分成两个group,一个为已经选取的selected_node(为list类型),一个为candidate_node,首先任取一个节点加入到selected_node,然后遍历头节点在selected_node,尾节点在candidate_node的边,选取符合这个条件的边里面权重最小的边,加入到最小生成树,选出的边的尾节点加入到selected_node,并从candidate_node删除。直到candidate_node中没有备选节点(这个循环条件要求所有节点都有边连接,即边数要大于等于节点数-1,循环开始前要加入这个条件判断,否则可能会有节点一直在candidate中,导致死循环)。
python" id="highlighter_27402">
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
|
#coding=utf-8
class graph( object ):
def __init__( self , maps):
self .maps = maps
self .nodenum = self .get_nodenum()
self .edgenum = self .get_edgenum()
def get_nodenum( self ):
return len ( self .maps)
def get_edgenum( self ):
count = 0
for i in range ( self .nodenum):
for j in range (i):
if self .maps[i][j] > 0 and self .maps[i][j] < 9999 :
count + = 1
return count
def kruskal( self ):
res = []
if self .nodenum < = 0 or self .edgenum < self .nodenum - 1 :
return res
edge_list = []
for i in range ( self .nodenum):
for j in range (i, self .nodenum):
if self .maps[i][j] < 9999 :
edge_list.append([i, j, self .maps[i][j]]) #按[begin, end, weight]形式加入
edge_list.sort(key = lambda a:a[ 2 ]) #已经排好序的边集合
group = [[i] for i in range ( self .nodenum)]
for edge in edge_list:
for i in range ( len (group)):
if edge[ 0 ] in group[i]:
m = i
if edge[ 1 ] in group[i]:
n = i
if m ! = n:
res.append(edge)
group[m] = group[m] + group[n]
group[n] = []
return res
def prim( self ):
res = []
if self .nodenum < = 0 or self .edgenum < self .nodenum - 1 :
return res
res = []
seleted_node = [ 0 ]
candidate_node = [i for i in range ( 1 , self .nodenum)]
while len (candidate_node) > 0 :
begin, end, minweight = 0 , 0 , 9999
for i in seleted_node:
for j in candidate_node:
if self .maps[i][j] < minweight:
minweight = self .maps[i][j]
begin = i
end = j
res.append([begin, end, minweight])
seleted_node.append(end)
candidate_node.remove(end)
return res
max_value = 9999
row0 = [ 0 , 7 ,max_value,max_value,max_value, 5 ]
row1 = [ 7 , 0 , 9 ,max_value, 3 ,max_value]
row2 = [max_value, 9 , 0 , 6 ,max_value,max_value]
row3 = [max_value,max_value, 6 , 0 , 8 , 10 ]
row4 = [max_value, 3 ,max_value, 8 , 0 , 4 ]
row5 = [ 5 ,max_value,max_value, 10 , 4 , 0 ]
maps = [row0, row1, row2,row3, row4, row5]
graph = graph(maps)
print ( '邻接矩阵为\n%s' % graph.maps)
print ( '节点数据为%d,边数为%d\n' % (graph.nodenum, graph.edgenum))
print ( '------最小生成树kruskal算法------' )
print (graph.kruskal())
print ( '------最小生成树prim算法' )
print (graph.prim())
|
初始的图如下。
运行结果如下。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/mashijia986/article/details/79100925