Time Limit: 1000MS | Memory Limit: 65536K | |||
Total Submissions: 35049 | Accepted: 10139 | Special Judge |
Description
1. Empty sequence is a regular sequence.
2. If S is a regular sequence, then (S) and [S] are both regular sequences.
3. If A and B are regular sequences, then AB is a regular sequence.
For example, all of the following sequences of characters are regular brackets sequences:
(), [], (()), ([]), ()[], ()[()]
And all of the following character sequences are not:
(, [, ), )(, ([)], ([(]
Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.
Input
Output
Sample Input
([(]
Sample Output
()[()] 题意:用最少的括号,补全答案。 看完题目第一想法可能是,不停地往读入的字符串中插入括号,但这样很难判断哪些是已有的匹配括号。 所以我们可以用一个二维数组pos记录片段,用dp记录区域间最少的的需要补全的括号。 初始化dp[i][i]为1,然后更新dp时顺便更新pos。
然后按pos更新。 注:这题目不知道什么鬼,最后需要输出一个 '\n',否则wa。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define INF 0x3f3f3f3f
typedef long long ll;
using namespace std;
const int N=;
char s[N];
int dp[N][N],pos[N][N]; bool march(char a,char b)
{
if(a=='('&&b==')'||a=='['&&b==']')
return true;
else
return false;
} void print(int i,int e)
{
if(i>e)
return;
else if(i==e)
{
if(s[i]=='('||s[i]==')')
printf("()");
else if(s[i]=='['||s[i]==']')
printf("[]"); }
else if(pos[i][e]==-)
{
printf("%c",s[i]);
print(i+,e-);
printf("%c",s[e]);
}
else
{
print(i,pos[i][e]);
print(pos[i][e]+,e);
}
} int main()
{
// freopen("input.txt","r",stdin);
gets(s);
// cin>>s;
int len=strlen(s);
memset(dp,,sizeof dp);
memset(pos,,sizeof pos);
for(int i=;i<len;i++)
{
dp[i][i]=;
}
for(int l=;l<len;l++)
{
for(int i=;l+i<len;i++)
{
int e=l+i;
dp[i][e] = 0x7fffffff;
if(march(s[i],s[e]))
{
dp[i][e]=dp[i+][e-];
pos[i][e]=-;
// cout<<"匹配:"<<i<<' '<<e<<' '<<dp[i][e]<<endl;
} for(int j=i;j<e;j++)
{
if(dp[i][e]>dp[i][j]+dp[j+][e])
{
dp[i][e]=dp[i][j]+dp[j+][e];
pos[i][e]=j;
// cout<<i<<' '<<e<<' '<<dp[i][e]<<endl;
}
}
}
}
print(,len-);
printf("\n");
}