题目大意:
一、有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数;
二、有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个倍数。
第一行两个数:p和q。(1<p<10^7 ,1<q<1000。)
接下来有q行,每行两个数A和B。(1<A,B<10^7)
我们先考虑第二个问题 ,很简单答案就是 (A/p) * (B/p) , 因为从p开始每次叠加p枚举到A,B中间得到的数都是可以任意选择,gcd()的值必然是p的倍数的
我们考虑第一个问题,这里约数的个数不超过数字n的2sqrt(n)个
所以我们可以枚举出每一个约数k,然后对k进行求和
对于使用莫比乌斯反演求和的话只是从当前来说复杂度大概是
O(q*lg(p)*(sqrt(A)+sqrt(B)) //sqrt(A)是因为对莫比乌斯数组求前缀和进行快速计算,这是莫比乌斯中常出现的方式
为了较低复杂度,我们列式计算考虑降维
如下列公式所示:
最后是如何计算sum[t],能计算出sum[]数组的话,t最大不超过min(A,B)那么总复杂度就能降为O(q*(sqrt(A)+sqrt(B))就没问题了
这里t只跟k,d有关系,那么只要枚举每一个k,d就能得到sum[t]的数组了
for(int i=0 ; i<cnt ; i++){
for(int d=1 ; d*fac[i]<=M ; d++){
sum[d*fac[i]] += mu[d];
}
}
for(int i=1 ; i<=M ; i++) sum[i] += sum[i-1];
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath> using namespace std;
#define ll long long
#define N 10005
#define M 10000000
int p,q,a,b,cnt;
int fac[N];
int mu[M+] , prime[M/] , tot , sum[M];
bool check[M+]; void get_mu()
{
mu[] = ;
for(int i= ; i<=M ; i++){
if(!check[i]){
mu[i] = -;
prime[tot++] = i;
}
for(int j= ; j<tot ; j++){
if((ll)prime[j]*i>M) break;
check[prime[j]*i] = true;
if(i%prime[j]==) break;
else mu[i*prime[j]] = -mu[i];
}
}
} void init()
{
int v = (int)sqrt(p+0.5);
for(int i= ; i<=v ; i++){
if(p%i==){
fac[cnt++] = i;
if(p/i!=i) fac[cnt++] = p/i;
}
}
} void pre_solve()
{
for(int i= ; i<cnt ; i++){
for(int d= ; d*fac[i]<=M ; d++){
sum[d*fac[i]] += mu[d];
}
}
for(int i= ; i<=M ; i++) sum[i] += sum[i-];
} ll cal(int a , int b)
{
ll ans = ;
for(int t= , last ; t<=a ; t=last+){
last = min(a/(a/t) , b/(b/t));
ans += (ll)(sum[last]-sum[t-])*(a/t)*(b/t);
}
return ans;
} int main()
{
get_mu();
scanf("%d%d" , &p , &q);
init();
pre_solve();
while(q--){
scanf("%d%d" , &a , &b);
if(a>b) swap(a , b);
printf("%lld %lld\n" , cal(a,b) , (ll)(a/p)*(b/p));
}
}