计算机视觉 | 基于 ORB 特征检测器和描述符的全景图像拼接算法
#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
@Project : Stitcher-全景图像拼接-ORB特征检测器和描述符
@File : Stitcher.py
@IDE : PyCharm
@Author : 半亩花海
@Date : 2024/04/10 11:29
"""
import numpy as np
import cv2
class Stitcher:
def stitch(self, images, ratio=0.75, reprojThresh=4.0, showMatches=False): # 拼接函数
# 解包输入图片
(imageB, imageA) = images
# 将图片转换为灰度图
grayA = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY)
grayB = cv2.cvtColor(imageB, cv2.COLOR_BGR2GRAY)
# 使用ORB特征检测器和描述符
(kpsA, featuresA) = self.detectAndDescribe(grayA)
(kpsB, featuresB) = self.detectAndDescribe(grayB)
# 匹配特征点
M = self.matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh)
# 如果匹配结果为空,则返回None
if M is None:
print("Failed to stitch images. Not enough matches.")
return None
# 解包匹配结果
(matches, H, status) = M
# 进行透视变换,拼接图像
result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
# 如果需要显示匹配结果,则返回拼接图和匹配可视化图
if showMatches:
vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches, status)
return (result, vis)
# 否则,只返回拼接图
return result
@staticmethod
def cv_show(name, img):
# 显示图像
cv2.imshow(name, img)
cv2.waitKey(0)
cv2.destroyAllWindows()
@staticmethod
def detectAndDescribe(image):
# 创建ORB特征检测器
orb = cv2.ORB_create()
# 检测特征点并计算描述符
(kps, features) = orb.detectAndCompute(image, None)
kps = np.float32([kp.pt for kp in kps])
return (kps, features)
@staticmethod
def matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh):
# 创建BFMatcher对象
matcher = cv2.BFMatcher()
# 使用KNN匹配
rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
# 进行筛选,获取匹配点对
matches = []
for m in rawMatches:
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
matches.append((m[0].trainIdx, m[0].queryIdx))
# 如果匹配点对数量大于4,则计算透视变换矩阵
if len(matches) > 4:
ptsA = np.float32([kpsA[i] for (_, i) in matches])
ptsB = np.float32([kpsB[i] for (i, _) in matches])
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh)
return (matches, H, status)
# 否则,返回None
return None
@staticmethod
def drawMatches(imageA, imageB, kpsA, kpsB, matches, status):
(hA, wA) = imageA.shape[:2]
(hB, wB) = imageB.shape[:2]
vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
vis[0:hA, 0:wA] = imageA
vis[0:hB, wA:] = imageB
for ((trainIdx, queryIdx), s) in zip(matches, status):
if s == 1:
ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
cv2.line(vis, ptA, ptB, (0, 255, 0), 1)
return vis
if __name__ == "__main__":
# 读取拼接图片
imageA = cv2.imread("left_01.png")
imageB = cv2.imread("right_01.png")
# 把图片拼接成全景图
stitcher = Stitcher()
result = stitcher.stitch([imageA, imageB], showMatches=True)
if result is not None:
# 解包拼接结果
(panorama, matchesVis) = result
# 显示拼接前的两幅图像,匹配的关键点和拼接后的图像
cv2.imshow("Image A", imageA)
cv2.imshow("Image B", imageB)
cv2.imshow("Keypoint Matches", matchesVis)
cv2.imshow("Result", panorama)
cv2.waitKey(0)
cv2.destroyAllWindows()