I have over 50 data.frames in my working environment that I would like to rbind. Is there a way to rbind the data.frames with out having to type out each date.frame?
我在我的工作环境中有超过50个data.frames,我想讨论。有没有办法重新绑定data.frames而不必输入每个date.frame?
Example of what I have been doing:
我一直在做的例子:
df <- rbind(A, B, C, D, E, F)
I have tried:
我努力了:
df <- rbind(ls())
But this just creates a list of names of all the data.frames in my working environment.
但这只是创建了我工作环境中所有data.frames的名称列表。
1 个解决方案
#1
12
You can search for objects of data.frame
class, and use function mget
to retrieve them.
您可以搜索data.frame类的对象,并使用函数mget来检索它们。
a = b = c = data.frame(x=1:2, y=3, z=1:4)
d = "junk"
e = list(poo="pah")
ls()
# [1] "a" "b" "c" "d" "e"
dfs = sapply(.GlobalEnv, is.data.frame)
dfs
# a b c d e
# TRUE TRUE TRUE FALSE FALSE
do.call(rbind, mget(names(dfs)[dfs]))
# x y z
# a.1 1 3 1
# a.2 2 3 2
# a.3 1 3 3
# a.4 2 3 4
# b.1 1 3 1
# b.2 2 3 2
# b.3 1 3 3
# b.4 2 3 4
# c.1 1 3 1
# c.2 2 3 2
# c.3 1 3 3
# c.4 2 3 4
#1
12
You can search for objects of data.frame
class, and use function mget
to retrieve them.
您可以搜索data.frame类的对象,并使用函数mget来检索它们。
a = b = c = data.frame(x=1:2, y=3, z=1:4)
d = "junk"
e = list(poo="pah")
ls()
# [1] "a" "b" "c" "d" "e"
dfs = sapply(.GlobalEnv, is.data.frame)
dfs
# a b c d e
# TRUE TRUE TRUE FALSE FALSE
do.call(rbind, mget(names(dfs)[dfs]))
# x y z
# a.1 1 3 1
# a.2 2 3 2
# a.3 1 3 3
# a.4 2 3 4
# b.1 1 3 1
# b.2 2 3 2
# b.3 1 3 3
# b.4 2 3 4
# c.1 1 3 1
# c.2 2 3 2
# c.3 1 3 3
# c.4 2 3 4