运动目标检测的四种方法
运动目标检测主要目的是从视频图像中提取出运动目标并获得运动目标的特征信息,如颜色、形状、轮廓等。提取运动目标的过程实际上就是一个图像分割的过程,而运动物体只有在连续的图像序列(如视频图像序列)中才能体现出来,运动目标提取的过程就是在连续的图像序列中寻找差异,并把由于物体运动和表现出来的差异提取出来。
常用的四种方法:连续帧间差分法、背景差分法、光流法和运动能量法。
1.连续帧间差分法:转自:原理,摄像机采集的视频序列具有连续性的特点。如果场景内没有运动目标,则连续帧的变化很微弱,如果存在运动目标,则连续的帧和帧之间会有明显地变化。 帧间差分法(Temporal Difference)就是借鉴了上述思想。由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧或三帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。
综上所述,帧间差分法的原理简单,计算量小,能够快速检测出场景中的运动目标。但由实验结果可以看出,帧间差分法检测的目标不完整,内部含有“空洞”,这是因为运动目标在相邻帧之间的位置变化缓慢,目标内部在不同帧图像中相重叠的部分很难检测出来。帧间差分法通常不单独用在目标检测中,往往与其它的检测算法结合使用。
2.背景差分法:背景差分法通过输入图像与背景图像进行比较从而分割出运动目标,在运用背景差分法时需要有一定的限制:要求前景(运动物体)象素的灰度值和背景象素的灰度值存在一定的差别,同时要求摄像机是静止的改善了连续帧间查分法所存在的问题。
背景差分法(background subtraction)是目前运动目标检测的主流方法,其基本思想是将当前每一帧图像与事先存储或实时获取的背景图像相减,计算出与背景偏离超过一定阀值的区域作为运动区域。该算法实现简单,相减结果直接给出目标的位置、大小、形状等信息,能够提供关于运动目标区域的完整描述,特别是对于摄像机静止的情况,背景减法是实现运动目标实时检测和提取的首选方法。
背景差分法实现的关键是背景模型的获取和更新。背景获取算法通常要求在场景中存在运动目标的情况下获取背景图像,更新过程使背景能够适应场景的各种变化和干扰,如外界光线的改变,背景中对象的扰动和固定对象的移动,阴影的影响等。一种典型的背景建模方法是用混合高斯模型描述背景图像像素值的分布,目标检测过程中判断图像的当前像素值是否符合该分布,若是被判为前景点,否则为背景点。同时根据新获取的图像,对背景图像参数进行自适应更新。该方法能够可靠处理光照变化、背景混乱运动的干扰以及长时间的场景变化等。在此基础上,对背景、静止目标和运动目标三者采取不同的更新策略,以减弱背景更新过程中运动目标对背景的影响。
**3.光流法:**这里给个链接,光流检测运动目标的基本原理是:通过图像中有目标和没目标时速度矢量的差异来检测目标。给图像中的每一个像素赋予一个速度矢量,这就形成了一个图像运动场,在运动的一个特定时刻,图像上的点与三维物体上的点一一对应,这种对应关系可由投影关系得到,根据各个像素的速度矢量特征,可以对图像进行动态分析。如果图像中没有运动目标,则光流矢量在整个图像区域是连续变化的,当物体和图像背景存在相对运动时,运动物体所形成的速度矢量必然和邻域背景速度矢量不同,从而检测出运动物体的位置。
光流是指图像亮度模式的表观或视在运动。使用“表观运动”的要原因是光流无法有运动图像的局部信息唯一的确定。,光流法介绍
**4.运动能量法:**待补充…