高级数据结构 <AVL树>

时间:2024-03-22 20:41:24

AVL树的插入函数


在二叉搜索树的插入函数基础上,AVL树的插入操作还需要对父节点的平衡因子进行调节,并在失衡的根节点处进行旋转调整。


AVL树插入流程:

  • 如果是第一次插入节点,直接赋值给 _root 作为根节点,_size+1。
  • 将插入值的key与当前节点值传入 _com函数 中对比,当函数返回true时向左子树走,返回false时向右子树走,如果走到空则跳出准备插入,如果相等则返回当前节点值。
  • 根据节点值与插入值key在_com函数中的对比结果,决定插入到父节点的左子树还是右子树。
  • 调整父节点的平衡因子,如果出现失衡(平衡因子绝对值为2)则进行旋转,并依次向上继续调整祖父节点,直到当前父节点平衡因子为0或节点为树的根节点为止。
  • _size+1并返回插入结果。

关于AVL树的返回值:AVL树返回值为 pair<val_type,bool>,当插入成功在返回节点值的同时并返回true,当插入失败(遇到相等值节点时)返回false。


插入函数代码:

//插入函数
pair<val_type, bool> insert(const val_type& data)
{
	//首次插入特殊处理
	if (nullptr == _root)
	{
		Node* newnode = new Node(data);
		_root = newnode;
		++_size;
		return { data,true };
	}

	//寻找合适的插入位置
	Node* newnode = new Node(data);
	Node* parent = _root;
	Node* cur = _root;
	while (cur)
	{
		if (_com(data.first, cur->_val.first))      // <
		{
			parent = cur;
			cur = cur->_left;
		}
		else if (_com(cur->_val.first, data.first)) // >
		{
			parent = cur;
			cur = cur->_right;
		}
		//找到相同值节点 返回false和节点值
		else return { data,false};                 // ==
	}

	//将新节点插入所寻找的父节点下
	if (_com(data.first, parent->_val.first)) parent->_left = newnode;
	else parent->_right = newnode;
	newnode->_parent = parent;
	cur = newnode;

	while (parent)
	{
		//调整父节点平衡因子
		if (parent->_left == cur) --(parent->_bf);
		else if (parent->_right == cur) ++(parent->_bf);

		//调整和旋转
		if (parent->_bf == 1 || parent->_bf == -1)
		{
			parent = parent->_parent;
			cur = cur->_parent;
		}
		else if (parent->_bf == 0) break;
		else //开始调整和旋转
		{
			if (parent->_bf == -2 && cur->_bf == -1) RotateR(parent);    //右单旋
			else if (parent->_bf == 2 && cur->_bf == 1) RotateL(parent); //左单旋
			else if (parent->_bf == -2 && cur->_bf == 1) RotateLR(parent); //左右旋
			else if (parent->_bf == 2 && cur->_bf == -1) RotateRL(parent); //右左旋
			else { assert(false); }
		}
	}
	++_size;
	return { data,true };
}

关于节点调整流程:

关于旋转调整节点,我们接下来进行详细探究!

关于需要调整的情况,一共可以分为四大类:
旋转
是否旋转,取决于parent和cur节点的平衡因子:

parent(父节点)平衡因子 cur(子节点)平衡因子 操作
-2 -1 右单旋
2 1 左单旋
-2 1 左右双旋
2 -1 右左双旋

左单旋

当根节点的右子树平衡因子为1的情况下,仍然向右子树中插入比右子树节点值大的节点,此时就会导致根节点平衡因子为2,右子树平衡因子为1,此时就需要左单旋。
在这里插入图片描述
当我们向20节点的右子树中插入35时,35是该树中的最大节点,便会插入在最右节点,此时30节点的平衡因子变为1,25节点则变为2,需要对其进行左单旋。


左单旋的函数代码:

//左单旋
void RotateL(Node* parent)
{
	//parent右子节点
	Node* childR = parent->_right;
	//parent右子节点的左子节点
	Node* childRL = childR->_left;
	//parent右子节点的右子节点
	Node* childRR = childR->_right;
	//parent节点的父节点
	Node* pparent = parent->_parent;

	//parent节点的右指向childR的左子树
	parent->_right = childRL;
	//如果childRL节点存在 则链接与parent节点的关系 否则parent->_right指向空
	if (childRL) childRL->_parent = parent;
	//将childR的左指向parent 构建链接关系
	childR->_left = parent;
	parent->_parent = childR;

	//与pparent构建链接关系 如果pparent为_root根节点 则设置_root
	if (pparent == nullptr)
	{
		_root = childR;
		_root->_parent = nullptr;
	}
	else //否则查看原parent节点是pparent的左还是右子树 插入原parent位置
	{
		if (pparent->_left = parent) pparent->_left = childR;
		else pparent->_right = childR;

		childR->_parent = pparent;
	}
	//更新受影响节点的平衡因子
	parent->_bf = childR->_bf = 0;
}

旋转过程简而言之就是更改节点的链接关系,使其深度降低!

对于上面图中的树,我们根据左单旋进行调整:
左单旋

左单旋过程梳理:

  • parent节点与childRL节点构建链接关系
  • childR节点的左子树置为parent,并相互构建链接关系
  • 判断pparent是否为空,不为空则将childR与pparent构建链接关系
  • 将parent节点与childR节点的平衡因子置为0

注意:这里在构建链接关系时,一定要注意构建与父节点的关系,容易忘记;childRL节点可能为空,如果为空则不需要与其新父节点(parent)构建链接关系,需要if判断!



右单旋

当根节点的左子树平衡因子为-1的情况下,仍然向左子树中插入比左子树节点值小的节点,此时就会导致根节点平衡因子为-2,左子树平衡因子为-1,此时就需要右单旋。
右单旋
右单旋与左单旋相似,只不过指针的调整方式不同。
当节点3插入后,节点10的平衡因子(左右子树高度差为2)为-2,此时插入的节点位于左子树的左侧,此时需要右旋转。


右单旋的函数代码:

//右单旋
void RotateR(Node* parent)
{
	Node* childL = parent->_left;
	Node* childLL = childL->_left;
	Node* childLR = childL->_right;
	Node* pparent = parent->_parent;

	parent->_left = childLR;
	if (childLR) childLR->_parent = parent;
	childL->_right = parent;
	parent->_parent = childL;

	if (pparent == nullptr)
	{
		_root = childL;
		_root->_parent = nullptr;
	}
	else
	{
		if (pparent->_left == parent) pparent->_left = childL;
		else pparent->_right = childL;

		childL->_parent = pparent;
	}
	parent->_bf = childL->_bf = 0;
}

对于上面图中的树,我们根据右单旋进行调整:
右单旋


右单旋过程梳理:

  • parent节点与childLR节点构建链接关系
  • childL节点的右子树置为parent,并相互构建链接关系
  • 判断pparent是否为空,不为空则将childL与pparent构建链接关系
  • 将parent节点与childL节点的平衡因子置为0

注意:这里在构建链接关系时,一定要注意构建与父节点的关系,容易忘记;childLR节点可能为空,如果为空则不需要与其新父节点(parent)构建链接关系,需要if判断!


右左双旋

当我们将值插入(高度差为1的树时)右子树右侧时会引发左单旋,当插入左子树左侧时会引发右单旋。

相反,如果将值插入右子树左侧或左子树右侧,则会引发双旋。
如果插入的是右子树左侧,此时parent平衡因子为,那么单旋就不能解决问题了,此时需要右左双旋,详细解释就是先 进行右单旋 再进行左单旋,这样才能降低高度。


关于以下情况,就是需要进行右左双旋:
右左双旋插入情况


右左双旋代码:

//右左双旋
void RotateRL(Node* parent)
{
	Node* childR  = parent->_right;
	Node* childRL = childR->_left;
	int bf = childRL->_bf;

	RotateR(childR);
	RotateL(parent);

	/*
			A
		B        C
			    D
			  E
	*/
	if (bf == -1)
	{
		parent->_bf = 0;
		childR->_bf = 1;
		childRL->_bf = 0;
	}
	/*
			A
		B        C
			    D
			     E
	*/
	else if (bf == 1)
	{
		parent->_bf = -1;
		childR->_bf = 0;
		childRL->_bf = 0;
	}
	/*
		A
		    B
		  C
	*/
	else if (bf == 0)
	{
		parent->_bf = 0;
		childR->_bf = 0;
		childRL->_bf = 0;
	}
	//如果出现其他情况,则表示代码有问题,需要检查
	else assert(false);
}

关于右左双旋,可以结合下图理解(三列情况,对应三种不同的平衡因子调整):
右左双旋


关于右左双旋的过程:

  • 先确定parent和childR和childRL节点
  • 对childR进行右单旋(将childRL变成childR的父节点)
  • 对parent进行左单旋(再将childRL变成childR的父节点)
  • 调整parent,childR和childRL节点的平衡因子(根据childRL节点平衡因子调整)

关于节点平衡因子的调整,从上图看出来,需要根据childRL节点来进行判断:

  • 当childRL平衡因子为 0parent的平衡因子调整为0childR的平衡因子调整为0childRL平衡因子调整为0
  • 当childRL平衡因子为 -1parent的平衡因子调整为0childR的平衡因子调整为1childRL平衡因子调整为0
  • 当childRL平衡因子为 1parent的平衡因子调整为-1childR的平衡因子调整为0childRL平衡因子调整为0

注意:右左双旋中,对childR进行右单旋转再对parent进行左单旋,这个顺序不能颠倒,且平衡因子的调整必须根据childRL平衡因子进行调整。


左右双旋

当节点插入到左子树的右侧时,此时parent平衡因子为-2且childR平衡因子为1,此时需要左右双旋,即需要 先进行左单旋,再进行右单旋 才能降低高度。


关于以下插入情况,此时的树需要进行左右双旋:
左右双旋插入情况


左右双旋代码:

//左右双旋
void RotateLR(Node* parent)
{
	Node* childL  = parent->_left;
	Node* childLR = childL->_right;
	int bf = childLR->_bf;

	RotateL(childL);
	RotateR(parent);

	/*
				A
			B		C
		D		E
			  F
	*/
	if (bf == -1)
	{
		childL->_bf = 0;
		childLR->_bf = 0;
		parent->_bf = 1;
	}
	/*
				A
			B		 C
		D	  E
			   F
	*/
	else if (bf == 1)
	{
		childL->_bf = -1;
		childLR->_bf = 0;
		parent->_bf = 0;
	}
	/*
	*	   A
	*	B
	*	  C
	*/
	else if (bf == 0)
	{
		childL->_bf = 0;
		childLR->_bf = 0;
		parent->_bf = 0;
	}
	//如果出现其他情况,则表示代码有问题,需要检查
	else assert(false);
}

关于右左双旋,可以结合下图理解(三列情况,对应三种不同的平衡因子调整):
左右双旋


关于左右双旋的过程:

  • 先确定parent和childL和childLR节点
  • 对childL进行左单旋(将childLR变成childL的父节点)
  • 对parent进行右单旋(再将childLR变成parent的父节点)
  • 调整parent,childL和childLR节点的平衡因子(根据childLR节点平衡因子调整)

关于节点平衡因子的调整,从上图看出来,需要根据childRL节点来进行判断:

  • 当childLR平衡因子为 0parent的平衡因子调整为0childL的平衡因子调整为0childLR平衡因子调整为0
  • 当childLR平衡因子为 -1parent的平衡因子调整为1childL的平衡因子调整为0childLR平衡因子调整为0
  • 当childLR平衡因子为 1parent的平衡因子调整为0childL的平衡因子调整为-1childLR平衡因子调整为0

注意:左右双旋中,对childL进行右单旋转再对parent进行左单旋,这个顺序不能颠倒,且平衡因子的调整必须根据childLR平衡因子进行调整。


AVL树主要值得学习的地方就在插入,学习其控制树的高度差的思想和旋转思想。