工具篇--分布式定时任务springBoot 整合 elasticjob使用(3)-二、扩展:

时间:2024-03-13 08:29:24

2.1 任务监听器:

  1. 定义监听器:
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang.time.DateFormatUtils;
import org.apache.shardingsphere.elasticjob.infra.listener.ElasticJobListener;
import org.apache.shardingsphere.elasticjob.infra.listener.ShardingContexts;

import java.util.Date;

@Slf4j
public class MyElasticJobListener implements ElasticJobListener {

    private long beginTime = 0;

    @Override
    public void beforeJobExecuted(ShardingContexts shardingContexts) {
        beginTime = System.currentTimeMillis();
        log.info("===>{} MyElasticJobListener BEGIN TIME: {} <===",shardingContexts.getJobName(),  DateFormatUtils.format(new Date(), "yyyy-MM-dd HH:mm:ss"));
    }

    @Override
    public void afterJobExecuted(ShardingContexts shardingContexts) {
        long endTime = System.currentTimeMillis();
        log.info("===>{} MyElasticJobListener END TIME: {},TOTAL CAST: {} <===",shardingContexts.getJobName(), DateFormatUtils.format(new Date(), "yyyy-MM-dd HH:mm:ss"), endTime - beginTime);
    }

    @Override
    public String getType() {
        return "myElasticJobListener";
    }


}

2) 在项目resources 新建文件夹: META-INF\services
在这里插入图片描述
3)新建文件,名称为:org.apache.shardingsphere.elasticjob.infra.listener.ElasticJobListener
文集内容:

# 监听器实现类的 类全路径
com.example.springelasticjob.config.MyElasticJobListener

4)job 配置增加监听器:

// 创建作业配置
        JobConfiguration jobConfiguration = JobConfiguration.newBuilder("myjob-param", 1).cron("0/5 * * * * ?")
                .overwrite(true).shardingItemParameters("0=Beijing,1=Shanghai,2=Guangzhou").jobParameter("0=a,1=b,2=c")
                .jobListenerTypes("myElasticJobListener")
                .build();

jobListenerTypes(“myElasticJobListener”) 中 “myElasticJobListener” 要和 MyElasticJobListener getType() 返回的保持一致,否则启动无法找到 监听器:
在这里插入图片描述

2. 2 DataflowJob 流工作:

2.2.1 新建 DataflowJob:


import lombok.extern.slf4j.Slf4j;
import org.apache.shardingsphere.elasticjob.api.ShardingContext;
import org.apache.shardingsphere.elasticjob.dataflow.job.DataflowJob;

import java.util.ArrayList;
import java.util.List;

/**
 * 流任务
 */
@Slf4j
public class MyDataFlowJob implements DataflowJob {
    @Override
    public List fetchData(ShardingContext shardingContext) {
        // 抓取数据
        // 分片参数 0=text,1=image,2=radio,3=vedio
        String jobParameter = shardingContext.getJobParameter();

        log.debug("job 执行 error,job名称:{},分片数量:{},分片:{},分片参数:{}", shardingContext.getJobName(), shardingContext.getShardingTotalCount(), shardingContext.getShardingItem(), jobParameter);
        List list = new ArrayList(1);
        list.add("lgx");
        return list;
    }

    @Override
    public void processData(ShardingContext shardingContext, List list) {
        // 数据处理
        System.out.println("list.toString() = " + list.toString());
    }
}

2.2.2 streaming.process 属性配置:

 private static JobConfiguration createJobConfiguration() {
        JobConfiguration jobConfiguration = JobConfiguration.newBuilder("myjob-dataflow-param", 1).cron("0/30 * * * * ?")
            
                .overwrite(true).shardingItemParameters("0=Beijing,1=Shanghai,2=Guangzhou").jobParameter("0=a,1=b,2=c")
              	//  streaming.process 流处理设置为true
                .setProperty("streaming.process","true")
                .build();


        return jobConfiguration;

    }

2.2.3 执行效果:

虽然任务是每隔30s 执行一次,但是因为 fetchData 可以一直获取到数据,使的 processData 方法可以一直被调用:
在这里插入图片描述