拉格朗日插值和牛顿插值 matlab

时间:2024-03-09 11:34:15

 

 

 

1. 已知函数在下列各点的值为

 

0.2

0.4

0.6

0.8

1.0

 

0.98

0.92

0.81

0.64

0.38

 

用插值法对数据进行拟合,要求给出Lagrange插值多项式和Newton插值多项式的表达式,并计算插值多项式在点的值。

 

程序:

x=[0.2 0.4 0.6 0.8 1.0];

y=[0.98 0.92 0.81 0.64 0.38];

x0=[0.2 0.28 0.44 0.76 1 1.08];

[f,f0]=Lagrange(x,y,x0)

 

function [f,f0] = Lagrange(x,y,x0) 

%求已知数据点的Lagrange插值多项式f,并计算插值多项式f在数据点x0的函数值f0  

syms t;

n = length(x);                                   

f = 0.0;

for i = 1:n

    l = y(i);

    for j = 1:i-1

         l = l*(t-x(j))/(x(i)-x(j));     

    end;

    for j = i+1:n

         l = l*(t-x(j))/(x(i)-x(j));     

    end;

    f = f + l;                              

    simplify(f);                        

    if(i==n)

       f0 = subs(f,\'t\',x0);               

       f = collect(f);                   

       f = vpa(f,6);               

    end

end

 

结果:

>> Untitled3

 

f =

 

- 0.520833*t^4 + 0.833333*t^3 - 1.10417*t^2 + 0.191667*t + 0.98

 

 

f0 =

 

[ 49/50, 60137/62500, 56377/62500, 42497/62500, 19/50, 15017/62500]

 

牛顿:

%y为对应x的值,A为差商表,C为多项式系数,L为多项式

%X为给定节点,Y为节点值,x为待求节点

function[y,A,C,L] = newton(X,Y,x,M)

n = length(X);

m = length(x);

for t = 1 : m

    z = x(t);

    A = zeros(n,n);

    A(:,1) = Y\';

    s = 0.0; p = 1.0; q1 = 1.0; c1 = 1.0;

        for j = 2 : n

            for i = j : n

                A(i,j) = (A(i,j-1) - A(i-1,j-1))/(X(i)-X(i-j+1));

            end

            q1 = abs(q1*(z-X(j-1)));

            c1 = c1 * j;

        end

        C = A(n, n); q1 = abs(q1*(z-X(n)));

        for k = (n-1):-1:1

            C = conv(C, poly(X(k)));

            d = length(C);

            C(d) = C(d) + A(k,k);

        end

        y(t) = polyval(C,z);

 

end

L = poly2sym(C);

 

x=[0.2 0.4 0.6 0.8 1.0];

y=[0.98 0.92 0.81 0.64 0.38];

x0=[0.2 0.28 0.44 0.76 1 1.08];

m=1;

[y,A,C,L]=newton(x,y,x0,m)

 

结果:

y =

 

    0.9800    0.9622    0.9020    0.6800    0.3800    0.2403

 

 

A =

 

    0.9800         0         0         0         0

    0.9200   -0.3000         0         0         0

    0.8100   -0.5500   -0.6250         0         0

    0.6400   -0.8500   -0.7500   -0.2083         0

    0.3800   -1.3000   -1.1250   -0.6250   -0.5208

 

 

C =

 

   -0.5208    0.8333   -1.1042    0.1917    0.9800

 

 

L =

 

- (25*x^4)/48 + (5*x^3)/6 - (53*x^2)/48 + (23*x)/120 + 49/50

 

 

2. 在区间上分别取,用两组等距节点对Runge函数作多项式插值(Lagrange插值和Newton插值均可),要求对每个值,分别画出插值多项式和函数的曲线。

程序:

x=-1:0.2:1;

y=1./(1+25*x.^2);

x0=-1:0.01:1;

[f,f0]=Lagrange(x,y,x0)

plot(x0,f0)

结果:

f =

 

- 220.942*t^10 + 494.91*t^8 - 381.434*t^6 + 123.36*t^4 - 16.8552*t^2 + 1.0

 

3.下列数据点的插值

 

0.01

1

4

9

16

25

36

49

64

 

0.1

1

2

3

4

5

6

7

8

可以得到平方根函数的近似多项式, 要求用上述9个点作8次插值多项式,并在区间画出的曲线。

程序:

x=[0.01 1   4   9   16  25  36  49  64];

y=[0.1  1   2   3   4   5   6   7   8];

x0=0.01:0.1:64;;

[f,f0]=Lagrange(x,y,x0)

plot(x0,f0)

xlim([0 64]);

结果:

f =

- 2.73858e-10*t^8 + 5.6069e-8*t^7 - 0.00000453906*t^6 + 0.000186698*t^5 - 0.00418177*t^4 + 0.0510128*t^3 - 0.32628*t^2 + 1.19115*t + 0.0881211