From: Predicting Movie Review Sentiment with TensorFlow and TensorBoard
Ref: http://www.cnblogs.com/libinggen/p/6939577.html
使用LSTM的原因之一是: 解决RNN Deep Network的Gradient错误累积太多,以至于Gradient归零或者成为无穷大,所以无法继续进行优化的问题。
Thanks to Jürgen Schmidhuber
Using the data from an old Kaggle competition “Bag of Words Meets Bags of Popcorn”
import pandas as pd
import numpy as np
import tensorflow as tf
import nltk, re, time
from nltk.corpus import stopwords
from collections import defaultdict
from tqdm import tqdm
from sklearn.model_selection import train_test_split
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from collections import namedtuple
Preprocessing
The data is formatted as .tsv
- remove stopwords
- Convert words to lower case
def clean_text(text, remove_stopwords=True):
'''Clean the text, with the option to remove stopwords''' # Convert words to lower case and split them
text = text.lower().split() # Optionally, remove stop words
if remove_stopwords:
stops = set(stopwords.words("english"))
text = [w for w in text if not w in stops] text = " ".join(text) # Clean the text
text = re.sub(r"<br />", " ", text)
text = re.sub(r"[^a-z]", " ", text)
text = re.sub(r" ", " ", text) # Remove any extra spaces
text = re.sub(r" ", " ", text) # Return a list of words
return(text)
Data clean
Tokenize
# Tokenize the reviews
all_reviews = train_clean + test_clean
tokenizer = Tokenizer()
tokenizer.fit_on_texts(all_reviews)
print("Fitting is complete.") train_seq = tokenizer.texts_to_sequences(train_clean)
print("train_seq is complete.") test_seq = tokenizer.texts_to_sequences(test_clean)
print("test_seq is complete")
word_index = tokenizer.word_index
NB: punctuation is useful!
[“The”, “cat”, “went”, “to”, “the”, “zoo”, “.”] --> [1, 2, 3, 4, 1, 5, 6]
Limiting your vocabulary
Your model should benefit from limiting your vocabulary to more common words
because it has seen each word in the text multiple times.
Reviews with the same length
I limited mine to 200 to increase the training speed of my model.
Build Graph with LSTM
def build_rnn(n_words, embed_size, batch_size, lstm_size, num_layers, dropout, learning_rate, multiple_fc, fc_units):
'''Build the Recurrent Neural Network''' tf.reset_default_graph() # Declare placeholders we'll feed into the graph
with tf.name_scope('inputs'):
inputs = tf.placeholder(tf.int32, [None, None], name='inputs') with tf.name_scope('labels'):
labels = tf.placeholder(tf.int32, [None, None], name='labels') keep_prob = tf.placeholder(tf.float32, name='keep_prob') # Create the embeddings
with tf.name_scope("embeddings"):
embedding = tf.Variable(tf.random_uniform((n_words, embed_size), -1, 1))
embed = tf.nn.embedding_lookup(embedding, inputs) # Build the RNN layers
with tf.name_scope("RNN_layers"):
lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size)
drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob)
cell = tf.contrib.rnn.MultiRNNCell([drop] * num_layers) # Set the initial state
with tf.name_scope("RNN_init_state"):
initial_state = cell.zero_state(batch_size, tf.float32) # Run the data through the RNN layers
with tf.name_scope("RNN_forward"):
outputs, final_state = tf.nn.dynamic_rnn(
cell,
embed,
initial_state=initial_state) # Create the fully connected layers
with tf.name_scope("fully_connected"): # Initialize the weights and biases
weights = tf.truncated_normal_initializer(stddev=0.1)
biases = tf.zeros_initializer() dense = tf.contrib.layers.fully_connected(outputs[:, -1],
num_outputs = fc_units,
activation_fn = tf.sigmoid,
weights_initializer = weights,
biases_initializer = biases) dense = tf.contrib.layers.dropout(dense, keep_prob) # Depending on the iteration, use a second fully connected
layer
if multiple_fc == True:
dense = tf.contrib.layers.fully_connected(dense,
num_outputs = fc_units,
activation_fn = tf.sigmoid,
weights_initializer = weights,
biases_initializer = biases) dense = tf.contrib.layers.dropout(dense, keep_prob) # Make the predictions
with tf.name_scope('predictions'):
predictions = tf.contrib.layers.fully_connected(dense,
num_outputs = 1,
activation_fn=tf.sigmoid,
weights_initializer = weights,
biases_initializer = biases) tf.summary.histogram('predictions', predictions) # Calculate the cost
with tf.name_scope('cost'):
cost = tf.losses.mean_squared_error(labels, predictions)
tf.summary.scalar('cost', cost) # Train the model
with tf.name_scope('train'):
optimizer =
tf.train.AdamOptimizer(learning_rate).minimize(cost) # Determine the accuracy
with tf.name_scope("accuracy"):
correct_pred = tf.equal(tf.cast(tf.round(predictions),
tf.int32),
labels)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
tf.summary.scalar('accuracy', accuracy) # Merge all of the summaries
merged = tf.summary.merge_all() # Export the nodes
export_nodes = ['inputs', 'labels', 'keep_prob','initial_state',
'final_state','accuracy', 'predictions', 'cost',
'optimizer', 'merged']
Graph = namedtuple('Graph', export_nodes)
local_dict = locals()
graph = Graph(*[local_dict[each] for each in export_nodes]) return graph
这里提到了几种思路:
Simple LSTM for Sequence Classification
model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
model.add(LSTM(100))
model.add(Dense(1, activation='sigmoid'))
1
2
3
4
5
6
7
|
Epoch 1/3
16750/16750 [==============================] - 107s - loss: 0.5570 - acc: 0.7149
Epoch 2/3
16750/16750 [==============================] - 107s - loss: 0.3530 - acc: 0.8577
Epoch 3/3
16750/16750 [==============================] - 107s - loss: 0.2559 - acc: 0.9019
Accuracy: 86.79%
|
LSTM For Sequence Classification With Dropout
model = Sequential()
model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
model.add(Dropout(0.2))
model.add(LSTM(100))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
1
2
3
4
5
6
7
|
Epoch 1/3
16750/16750 [==============================] - 108s - loss: 0.5802 - acc: 0.6898
Epoch 2/3
16750/16750 [==============================] - 108s - loss: 0.4112 - acc: 0.8232
Epoch 3/3
16750/16750 [==============================] - 108s - loss: 0.3825 - acc: 0.8365
Accuracy: 85.56%
|
LSTM and Convolutional Neural Network For Sequence Classification
model = Sequential()
model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(LSTM(100))
model.add(Dense(1, activation='sigmoid'))
1
2
3
4
5
6
7
|
Epoch 1/3
16750/16750 [==============================] - 58s - loss: 0.5186 - acc: 0.7263
Epoch 2/3
16750/16750 [==============================] - 58s - loss: 0.2946 - acc: 0.8825
Epoch 3/3
16750/16750 [==============================] - 58s - loss: 0.2291 - acc: 0.9126
Accuracy: 86.36%
|
特征处理
在文本挖掘中做了很大的努力,比如提取关键词、情感分析、word embedding聚类之类都尝试过,但效果都不是很好,
对于文本的特征的建议还是去找出一些除了停用词以外的高频词汇,寻找与这个房屋分类问题的具体联系。
到了头疼的部分了,数据有了,我们得想办法从数据里面拿到有区分度的特征。
- 比如说Kaggle该问题的引导页提供的word2vec就是一种文本到数值域的特征抽取方式,
- 比如说我们在第6小节提到的用户信息提取关键字也是提取特征的一种。
- 比如说在这里,我们打算用在文本检索系统中非常有效的一种特征:TF-IDF(term frequency-interdocument frequency)向量。每一个电影评论最后转化成一个TF-IDF向量。
稍加解释一下,TF-IDF是一种统计方法,用以评估一字词(或者n-gram)对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。这是一个能很有效地判定对评论褒贬影响大的词或短语的方法。
那个…博主打算继续偷懒,把scikit-learn中TFIDF向量化方法直接拿来用,想详细了解的同学可以戳sklearn TFIDF向量类。对了,再多说几句我的处理细节,停用词被我掐掉了,同时我在单词的级别上又拓展到2元语言模型,恩,你可以再加3元4元语言模型…单机内存不够了,先就2元上,凑活用吧…
End.