机器学习作业(一)线性回归——Matlab实现

时间:2024-03-03 22:45:08

题目太长啦!文档下载【传送门

第1题

简述:设计一个5*5的单位矩阵。

function A = warmUpExercise()
A = [];
A = eye(5);
end

 

运行结果:

 

第2题

简述:实现单变量线性回归。

第1步:加载数据文件;

data = load(\'ex1data1.txt\');
X = data(:, 1); y = data(:, 2);
m = length(y); % number of training examples
% Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y);

 

 第2步:plotData函数实现训练样本的可视化;

function plotData(x, y)
figure;
plot(x,y,\'rx\',\'MarkerSize\',10);
ylabel(\'Profit in $10,000s\');
xlabel(\'Population of City in 10,000s\');
end 

 

第3步:使用梯度下降函数计算局部最优解,并显示线性回归;

X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
theta = zeros(2, 1); % initialize fitting parameters
% Some gradient descent settings
iterations = 1500;
alpha = 0.01;
% run gradient descent
theta = gradientDescent(X, y, theta, alpha, iterations);
% print theta to screen
fprintf(\'Theta found by gradient descent:\n\');
fprintf(\'%f\n\', theta);
% Plot the linear fit
hold on; % keep previous plot visible
plot(X(:,2), X*theta, \'-\')
legend(\'Training data\', \'Linear regression\')
hold off % don\'t overlay any more plots on this figure  

 

第4步:实现梯度下降gradientDescent函数;

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)

% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);

for iter = 1:num_iters
    theta = theta - alpha/length(y)*(X\'*(X*theta-y));
    % Save the cost J in every iteration    
    J_history(iter) = computeCost(X, y, theta);
end

end

 

第5步:实现代价计算computeCost函数;

function J = computeCost(X, y, theta)
m = length(y); % number of training examples
J = 1/(2*m)*sum((X*theta-y).^2);
end

 

第6步:实现三维图、轮廓图的显示。

% Grid over which we will calculate J
theta0_vals = linspace(-10, 10, 100);
theta1_vals = linspace(-1, 4, 100);

% initialize J_vals to a matrix of 0\'s
J_vals = zeros(length(theta0_vals), length(theta1_vals));

% Fill out J_vals
for i = 1:length(theta0_vals)
    for j = 1:length(theta1_vals)
	  t = [theta0_vals(i); theta1_vals(j)];
	  J_vals(i,j) = computeCost(X, y, t);
    end
end

% Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped
J_vals = J_vals\';
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals);
xlabel(\'\theta_0\'); ylabel(\'\theta_1\');

% Contour plot
figure;
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
xlabel(\'\theta_0\'); ylabel(\'\theta_1\');
hold on;
plot(theta(1), theta(2), \'rx\', \'MarkerSize\', 10, \'LineWidth\', 2);

 

运行结果:

 

 

 

第3题

简述:实现多元线性回归。

第1步:加载数据文件;

data = load(\'ex1data2.txt\');
X = data(:, 1:2);
y = data(:, 3);
m = length(y);
[X mu sigma] = featureNormalize(X);
% Add intercept term to X
X = [ones(m, 1) X];

 

第2步:均值归一化featureNormalize函数实现;

function [X_norm, mu, sigma] = featureNormalize(X)

X_norm = X;
mu = zeros(1, size(X, 2));
sigma = zeros(1, size(X, 2));
mu = mean(X,1);
sigma = std(X,0,1);
X_norm = (X_norm-mu)./sigma;

end

 

第3步:使用梯度下降函数计算局部最优解,并显示线性回归;

% Choose some alpha value
alpha = 0.05;
num_iters = 100;

% Init Theta and Run Gradient Descent 
theta = zeros(3, 1);
[theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters);

% Plot the convergence graph
figure;
plot(1:numel(J_history), J_history, \'-b\', \'LineWidth\', 2);
xlabel(\'Number of iterations\');
ylabel(\'Cost J\');

 

第4步:实现梯度下降gradientDescentMulti函数;

function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)

m = length(y); % number of training examples
J_history = zeros(num_iters, 1);

for iter = 1:num_iters
    theta = theta - alpha/m*(X\'*(X*theta-y));
    % Save the cost J in every iteration    
    J_history(iter) = computeCostMulti(X, y, theta);
end

end

 

第5步:实现代价计算computeCostMulti函数;

function J = computeCostMulti(X, y, theta)
m = length(y); % number of training examples
J = 1/(2*m)*sum((X*theta-y).^2);%J=(X*theta-y)\'*(X*theta-y)/(2*m);
end

 

运行结果:

 

第6步:使用上述结果对“the price of a 1650 sq-ft, 3 br house”进行预测;

X1 = [1,1650,3];
X1(2:3) = (X1(2:3)-mu)./sigma;
price = X1*theta;

预测结果: 

 

第7步:使用正规方程法求解;

%%Load Data
data = csvread(\'ex1data2.txt\');
X = data(:, 1:2);
y = data(:, 3);
m = length(y);

% Add intercept term to X
X = [ones(m, 1) X];

% Calculate the parameters from the normal equation
theta = normalEqn(X, y);

 

第8步:实现normalEqn函数;

function [theta] = normalEqn(X, y)
theta = zeros(size(X, 2), 1);
theta = (X\'*X)^(-1)*X\'*y;
end

 

第9步:使用上述结果对“the price of a 1650 sq-ft, 3 br house”再次进行预测;

price = [1,1650,3]*theta;

预测结果:(与梯度下降法结果很接近)