Precision(查准率/精确率)
所有预测为正样本的结果中,预测正确的比率。
Precision = TP / (TP + FP)
Recall (查全率/召回率)
所有正样本中被正确预测的比率。
Recall = TP / (TP + FN)
正样本 | 负样本 | |
---|---|---|
预测为正 | True Positive(TP) | False Positive(FP) |
预测为负 | False Negative(FN) | True Negative(TN) |
精确率(precision)和call)计算时不涉及NMS,也就是说如果FP(预测为正样本实际是负样本)或者FN(预测为负样本实际是正样本)比较大也会导致精确率或者召回率低。在OCR的版面分析中比较突出。
PR曲线(Precision-Recall)
Recall为横坐标,Precision为纵坐标组成的曲线,
AP(Average Precision:PR曲线下面积)
AP:在固定IOU下,某一类别所有图片平均精度
mAP(mean Average Precision)
mAP:所有类别AP的平均值
IoU(Intersection over Union)
IoU也称作交并比,评价边界框正确性的度量指标,表示detection box(检测框)与ground truth(真实标签)的交集和并集的比值。
mAP@0.5(IoU=0.5)
TP:IoU>0.5 的检测框数量(同一GT只计算一次)
FP:IoU<=0.5 的检测框数量,或检测到同一个 GT 的多余检测框的数量
nms和P,R,map原理及在Yolov5代码中的解析_yolov5p r计算-CSDN博客
mAP@0.5:0.95
表示在不同IoU阈值(从0.5到0.95,步长0.05)上的mAP的平均值。
(0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95)
F1-score
是衡量二分类模型精度的一种指标,兼顾了分类模型的精确率和召回率。它是精确率和召回率的调和平均数,最大为1,最小为0。F1-score越大自然说明模型质量更高。但是还要考虑模型的泛化能力,F1-score过高但不能造成过拟合,影响模型的泛化能力
F1-score = 2(Precision × Recall )/(Precision + Recall)
(10 封私信 / 30 条消息) F1-score是越大越好吗? - 知乎 (zhihu.com)