题解:尼姆博弈,对于1至1000计算SG函数,每次取最小的前继值,SG值异或为0则为P-position。
#include <cstdio>
#include <cstring>
using namespace std;
int fbi[30];
int SG[1001];
int m,n,p;
int main(){
fbi[0]=0,fbi[1]=1,fbi[2]=2;
for(int i=3;fbi[i-1]<=1000;i++)fbi[i]=fbi[i-1]+fbi[i-2];
memset(SG,0,sizeof SG);
int hash[40];
for(int i=1;i<=1000;i++){
memset(hash,0,sizeof hash);
for(int j=1;fbi[j]<=i;j++)hash[SG[i-fbi[j]]]=1;
for(int j=0;;j++)if(hash[j]==0){SG[i]=j;break;}
}
while(scanf("%d%d%d",&m,&n,&p),m||n||p){
if((SG[m]^SG[n]^SG[p])!=0)printf("Fibo\n");
else printf("Nacci\n");
}
return 0;
}