热力学统计物理中有熵增加原理,在信息论中也有对应的关于信息熵的著名定理――最大信息熵原理。
在很多情况下,对一些随机事件,我们并不了解其概率分布,所掌握的只是与随机事件有关的一个或几个随机变量的平均值。例如,我们只知道一个班的学生考试成绩有三个分数档:80分、90分、100分,且已知平均成绩为90分。显然在这种情况下,三种分数档的概率分布并不是唯一的。因为在下列已知条件限制下
有无限多组解,该选哪一组解呢?即如何从这些相容的分布中挑选出“最佳的”、“最合理”的分布来呢?这个挑选标准就是最大信息熵原理。 按最大信息熵原理,我们从全部相容的分布中挑选这样的分布,它是在某些约束条件下(通常是给定的某些随机变量的平均值)使信息熵达到极大值的分布。这一原理是由杨乃斯提出的。这是因为信息熵取得极大值时对应的一组概率分布出现的概率占绝对优势。从理论上可以证明这一点。 在我们把熵看作是计量不确定程度的最合适的标尺时,我们就基本已经认可在给定约束下选择不确定程度最大的那种分布作为随机变量的分布。因为这种随机分布是最为随机的,是主观成分最少,把不确定的东西作最大估计的分布。 任何物质系统除了都受到或多或少的外部约束外,其内部总是具有一定的*度,这种*度导致系统内的各元素处于不同的状态。而状态的多样性,状态的丰富程度(混乱程度、复杂程度)的定量计量标尺就是熵,熵最大就是事物状态的丰富程度自动达到最大值。换句话说,事物总是在约束下争取(或呈现)最大的*权,我们把这看作是自然界的根本原则。 在给定的约束条件下,由最大信息熵原理求“最佳”概率分布,就是求解条件极值问题。在某些场合,常用拉格朗日乘子法来确定此分布。
然后列出 无约束条件时具有极值的必要条件
从信息论中发展起来的最大信息熵原理,使人们开始把统计物理看成是信息论的特例。这使我们看到熵概念的强大生命力,也看到了熵概念和熵原理的重大意义。 |
相关文章
- 决策树算法——熵与信息增益(Python3实现)
- 统计学基础(二):信息熵、基尼系数
- 如何获取显示器的EDID信息 Q1: 为什么要写这篇文章? A1:在最近的工作中遇到了不少问题,其中很多都是和EDID相关的。可以说,作为一家以“显示”为生的企业,我们时时刻刻在与EDID打交道。EDID这东西很简单,但是如果不了解其基本原理和概念的话,会给我们的工作带来不少麻烦。因此,我决定将我对EDID的理解和调试EDID的一些经验写成一篇文章,供大家学习和参考,希望能对大家的工作有所帮助。为了方便阅读和理解,文章写成问答的形式。由于本人接触EDID的时间不长,文章中难免
- Java 数据结构-特点: 代表一个队列,通常按照先进先出(FIFO)的顺序操作元素。 实现类: LinkedList, PriorityQueue, ArrayDeque。 堆(Heap) 堆(Heap)优先队列的基础,可以实现最大堆和最小堆。 PriorityQueue<Integer minHeap = new PriorityQueue<>; PriorityQueue<Integer maxHeap = new PriorityQueue<>(Collections.reverseOrder); 树(Trees) Java 提供了 TreeNode 类型,可以用于构建二叉树等数据结构。 class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } } 图(Graphs) 图的表示通常需要自定义数据结构或使用图库,Java 没有内建的图类。 以上介绍的只是 Java 中一些常见的数据结构,实际上还有很多其他的数据结构和算法可以根据具体问题选择使用。 其他一些说明 以下这些类是传统遗留的,在 Java2 中引入了一种新的框架-集合框架(Collection),我们后面再讨论。 枚举(Enumeration) 枚举(Enumeration)接口虽然它本身不属于数据结构,但它在其他数据结构的范畴里应用很广。 枚举(The Enumeration)接口定义了一种从数据结构中取回连续元素的方式。 例如,枚举定义了一个叫nextElement 的方法,该方法用来得到一个包含多元素的数据结构的下一个元素。 关于枚举接口的更多信息,请参见枚举(Enumeration)。 位集合(BitSet) 位集合类实现了一组可以单独设置和清除的位或标志。 该类在处理一组布尔值的时候非常有用,你只需要给每个值赋值一"位",然后对位进行适当的设置或清除,就可以对布尔值进行操作了。 关于该类的更多信息,请参见位集合(BitSet)。 向量(Vector) 向量(Vector)类和传统数组非常相似,但是Vector的大小能根据需要动态的变化。 和数组一样,Vector对象的元素也能通过索引访问。 使用Vector类最主要的好处就是在创建对象的时候不必给对象指定大小,它的大小会根据需要动态的变化。 关于该类的更多信息,请参见向量(Vector) 栈(Stack) 栈(Stack)实现了一个后进先出(LIFO)的数据结构。 你可以把栈理解为对象的垂直分布的栈,当你添加一个新元素时,就将新元素放在其他元素的顶部。 当你从栈中取元素的时候,就从栈顶取一个元素。换句话说,最后进栈的元素最先被取出。 关于该类的更多信息,请参见栈(Stack)。 字典(Dictionary) 字典(Dictionary) 类是一个抽象类,它定义了键映射到值的数据结构。 当你想要通过特定的键而不是整数索引来访问数据的时候,这时候应该使用 Dictionary。 由于 Dictionary 类是抽象类,所以它只提供了键映射到值的数据结构,而没有提供特定的实现。 关于该类的更多信息,请参见字典( Dictionary)。 Dictionary 类在较新的 Java 版本中已经被弃用(deprecated),推荐使用 Map 接口及其实现类,如 HashMap、TreeMap 等,来代替 Dictionary。
- 最大信息熵原理
- 同时购入两台同款thinkpad笔记本电脑,分别使用同一账户激活office失败--------------解决方法(账户下有多个Office激活信息,重装后提示“许可证不正确或者最大激活次数”) - Hello_BeautifulWorld
- 熵,条件熵,相对熵,互信息的相关定义及公式推导
- 最大比率传输(Maximum Ratio Transmission, MRT)原理分析
- Atitit.信息论原理概论attilax总结
- 构建一个学生Student,根据类Student的定义,创建五个该类的对象,输出每个学生的信息,计算并输出这五个学生Java语言成绩的平均值,以及计算并输出他们Java语言成绩的最大值和最小值。