Hive-SQL语法大全

时间:2024-01-25 07:01:24

Hive SQL 语法大全

基于语法描述说明

CREATE DATABASE [IF NOT EXISTS] db_name [LOCATION] 'path';
SELECT expr, ... FROM tbl ORDER BY col_name [ASC | DESC]
(A | B | C)

如上语法,在语法描述中出现:

  • [],表示可选,如上[LOCATION] 表示可写、可不写

  • |,表示或,如上ASC | DESC,表示二选一

  • …,表示序列,即未完结,如上SELECT expr, ... 表示在SELECT后可以跟多个expr(查询表达式),以逗号隔开

  • (),表示必填,如上(A | B | C)表示此处必填,填入内容在A、B、C中三选一

数据库操作

创建数据库

CREATE DATABASE [IF NOT EXISTS] db_name [LOCATION 'path'] [COMMENT database_comment];
  • IF NOT EXISTS,如存在同名数据库不执行任何操作,否则执行创建数据库操作

  • [LOCATION],自定义数据库存储位置,如不填写,默认数据库在HDFS的路径为:/user/hive/warehouse

  • [COMMENT database_comment],可选,数据库注释

删除数据库

DROP DATABASE [IF EXISTS] db_name [CASCADE];
  • [IF EXISTS],可选,如果存在此数据库执行删除,不存在不执行任何操作
  • [CASCADE],可选,级联删除,即数据库内存在表,使用CASCADE可以强制删除数据库

数据库修改LOCATION

ALTER DATABASE database_name SET LOCATION hdfs_path;

不会在HDFS对数据库所在目录进行改名,只是修改location后,新创建的表在新的路径,旧的不变

选择数据库

USE db_name;
  • 选择数据库后,后续SQL操作基于当前选择的库执行
  • 如不使用use,默认在default库执行

若想切换回使用default库

USE DEFAULT;

查询当前USE的数据库

SELECT current_database();

表操作

数据类型

分类 类型 描述 字面量示例
原始类型 BOOLEAN true/false TRUE
TINYINT 1字节的有符号整数 -128~127 1Y
SMALLINT 2个字节的有符号整数,-32768~32767 1S
INT 4个字节的带符号整数 1
BIGINT 8字节带符号整数 1L
FLOAT 4字节单精度浮点数1.0
DOUBLE 8字节双精度浮点数 1.0
DEICIMAL 任意精度的带符号小数 1.0
STRING 字符串,变长 “a”,’b’
VARCHAR 变长字符串 “a”,’b’
CHAR 固定长度字符串 “a”,’b’
BINARY 字节数组
TIMESTAMP 时间戳,毫秒值精度 122327493795
DATE 日期 ‘2016-03-29’
时间频率间隔
复杂类型 ARRAY 有序的的同类型的集合 array(1,2)
MAP key-value,key必须为原始类型,value可以任意类型 map(‘a’,1,’b’,2)
STRUCT 字段集合,类型可以不同 struct(‘1’,1,1.0), named_stract(‘col1’,’1’,’col2’,1,’clo3’,1.0)
UNION 在有限取值范围内的一个值 create_union(1,’a’,63)

基础建表

CREATE [EXTERNAL] TABLE tb_name
	(col_name col_type [COMMENT col_comment], ......)
	[COMMENT tb_comment]
	[PARTITIONED BY(col_name, col_type, ......)]
	[CLUSTERED BY(col_name, col_type, ......) INTO num BUCKETS]
	[ROW FORMAT DELIMITED FIELDS TERMINATED BY '']
	[LOCATION 'path']
  • [EXTERNAL],外部表,必须搭配

  • [ROW FORMAT DELIMITED FIELDS TERMINATED BY '']指定列分隔符

  • [LOCATION 'path']表数据路径

  • 外部表示意

    CREATE EXTERNAL TABLE test_ext(id int) COMMENT 'external table' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LOCATION 'hdfs://node1:8020/tmp/test_ext';
    

(1)外部表中的表和数据是相互独立的,将表删除(删除元数据),数据还保留在Hive中;将数据删除,表仍然存在。
请添加图片描述

(2) 删除内部表,则元数据和数据都被删除。
请添加图片描述

  • [desc formatted tablename]查看表类型

  • [COMMENT tb_comment]表注释,可选

  • [PARTITIONED BY(col_name, col_type, ......)]基于列分区

    -- 分区表示意
    CREATE TABLE test_ext(id int) COMMENT 'partitioned table' PARTITION BY(year string, month string, day string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
    
  • [CLUSTERED BY(col_name, col_type, ......)]基于列分桶

    CREATE TABLE course (c_id string,c_name string,t_id string) CLUSTERED BY(c_id) INTO 3 BUCKETS ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
    

基于其它表的结构建表

CREATE TABLE tbl_name LIKE other_tbl;

基于查询结果建表

CREATE TABLE tbl_name AS SELECT ...;

删除表

DROP TABLE tbl;

修改表

重命名

ALTER TABLE old RENAME TO new;

修改属性:内部表和外部表的转换

ALTER TABLE tbl SET TBLPROPERTIES(key=value);
-- 常用属性
("EXTERNAL"="TRUE") -- 内外部表,TRUE表示外部表,内转外
('comment' = new_comment) -- 修改表注释
-- 其余属性参见
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-listTableProperties

分区操作

创建分区表: 将表拆分到不同的子文件夹中进行存储

-- 分区表示意
CREATE TABLE test_ext(id int) COMMENT 'partitioned table' PARTITION BY(year string, month string, day string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

添加分区

ALTER TABLE tablename ADD PARTITION (partition_key='partition_value', ......);

修改分区值

ALTER TABLE tablename PARTITION (partition_key='old_partition_value') RENAME TO PARTITION (partition_key='new_partition_value');

注意

只会在元数据中修改,不会同步修改HDFS路径吗,如:

  • 原分区路径为:/user/hive/warehouse/test.db/test_table/month=201910,分区名:month='201910'
  • 将分区名修改为:201911后,分区所在路径不变,依旧是:/user/hive/warehouse/test.db/test_table/month=201910

如果希望修改分区名后,同步修改HDFS的路径,并保证正常可用,需要:

  • 在元数据库中:找到SDS表 -> 找到LOCATION列 -> 找到对应分区的路径记录进行修改
    • 如将记录的:/user/hive/warehouse/test.db/test_table/month=201910 修改为:/user/hive/warehouse/test.db/test_table/month=201911
  • 在HDFS中,同步修改文件夹名
    • 如将文件夹:/user/hive/warehouse/test.db/test_table/month=201910 修改为:/user/hive/warehouse/test.db/test_table/month=201911

删除分区

ALTER TABLE tablename DROP PARTITION (partition_key='partition_value');

删除分区后,只是在元数据中删除,即删除元数据库中:

  • PARTITION
  • SDS

相关记录

分区所在的HDFS文件夹依旧保留

加载数据

LOAD DATA:从本地 or Hdfs

LOAD DATA [LOCAL] INPATH 'path' INTO TABLE tbl PARTITION(partition_key='partition_value');
-- 注意,基于HDFS进行load加载数据,源数据文件会消失
--(本质是被移动到表所在的目录中)

INSERT SELECT:从其他表中加载数据

INSERT (OVERWRITE | INTO) TABLE tbl PARTITION(partition_key='partition_value') SELECT ... FROM ...;

分桶操作

分桶是将表拆分到固定数量的不同文件中进行存储

建表

set hive.enforce.bucketing=true; --开启分桶自动优化
-- 创建分桶表
CREATE TABLE course (c_id string,c_name string,t_id string) 
	[PARTITION(partition_key='partition_value')] 
	CLUSTERED BY(c_id) INTO 3 BUCKETS 
	ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
  • CLUSTERED BY(col) 指定分桶列
  • INTO 3 BUCKETS,设定3个桶

分桶表需要开启:

set hive.enforce.bucketing=true;

设置自动匹配桶数量的reduces task数量

分桶表能带来什么性能提升?
答:在基于分桶列做操作的前提下,单值过滤、Group by、join。

数据加载

INSERT (OVERWRITE | INTO) TABLE tbl 
	[PARTITION(partition_key='partition_value')] 
	SELECT ... FROM ... CLUSTER BY(col);

分桶表无法使用LOAD DATA进行数据加载

数据加载

LOAD DATA

将数据文件加载到表

LOAD DATA [LOCAL] INPATH 'path' INTO TABLE tbl [PARTITION(partition_key='partition_value')];	-- 指定分区可选

INSERT SELECT

将其它表数据,加载到目标表

INSERT (OVERWRITE | INTO) TABLE tbl 
	[PARTITION(partition_key='partition_value')] 		-- 指定分区,可选
	SELECT ... FROM ... [CLUSTER BY(col)];				-- 指定分桶列,可选

数据导出

INSERT OVERWRITE SELECT

INSERT OVERWRITE [LOCAL] DIRECTORY ‘path’ 				-- LOCAL可选,带LOCAL导出Linux本地,不带LOCAL导出到HDFS
	[ROW FORMAT DELIMITED FIELDS TERMINATED BY '']		-- 可选,自定义列分隔符
	SELECT ... FROM ...;
-- 将表中的数据导出到其他任意目录,例如linux本地磁盘,例如hdfs,例如mysql等等

bin/hive

  • bin/hive -e 'sql' > export_filesql结果重定向到导出文件中
  • bin/hive -f 'sql_script_file' > export_filesql脚本执行的结果重定向到导出文件中

复杂类型

类型 定义 示例 内含元素类型 元素个数 取元素 可用函数
array array<类型> 如定义为array数据为:1,2,3,4,5 单值,类型取决于定义 动态,不限制 array[数字序号] 序号从0开始 size统计元素个数 array_contains判断是否包含指定数据
map map<key类型, value类型> 如定义为:map<string, int>数据为:{’a’: 1, ‘b’: 2, ‘c’: 3} 键值对,K-V,K和V类型取决于定义 动态,不限制 map[key] 取出对应key的value size统计元素个数array_contains判断是否包含指定数据 map_keys取出全部key,返回array map_values取出全部values,返回array
struct struct<子列名 类型, 子列名 类型…> 如定义为:struct<c1 string, c2 int, c3 date>数据为:’a’, 1, ‘2000-01-01’ 单值,类型取决于定义 固定,取决于定义的子列数量 struct.子列名 通过子列名取出子列值 暂无

数据查询的课堂SQL记录

基本查询

create database itheima;
use itheima;
CREATE TABLE itheima.orders (
    orderId bigint COMMENT '订单id',
    orderNo string COMMENT '订单编号',
    shopId bigint COMMENT '门店id',
    userId bigint COMMENT '用户id',
    orderStatus tinyint COMMENT '订单状态 -3:用户拒收 -2:未付款的订单 -1:用户取消 0:待发货 1:配送中 2:用户确认收货',
    goodsMoney double COMMENT '商品金额',
    deliverMoney double COMMENT '运费',
    totalMoney double COMMENT '订单金额(包括运费)',
    realTotalMoney double COMMENT '实际订单金额(折扣后金额)',
    payType tinyint COMMENT '支付方式,0:未知;1:支付宝,2:微信;3、现金;4、其他',
    isPay tinyint COMMENT '是否支付 0:未支付 1:已支付',
    userName string COMMENT '收件人姓名',
    userAddress string COMMENT '收件人地址',
    userPhone string COMMENT '收件人电话',
    createTime timestamp COMMENT '下单时间',
    payTime timestamp COMMENT '支付时间',
    totalPayFee int COMMENT '总支付金额'
) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

load data local inpath '/home/hadoop/itheima_orders.txt' into table itheima.orders;

CREATE TABLE itheima.users (
    userId int,
    loginName string,
    loginSecret int,
    loginPwd string,
    userSex tinyint,
    userName string,
    trueName string,
    brithday date,
    userPhoto string,
    userQQ string,
    userPhone string,
    userScore int,
    userTotalScore int,
    userFrom tinyint,
    userMoney double,
    lockMoney double,
    createTime timestamp,
    payPwd string,
    rechargeMoney double
) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

load data local inpath '/home/hadoop/itheima_users.txt' into table itheima.users;

-- 查询全表数据
SELECT * FROM itheima.orders;

-- 查询单列信息
SELECT orderid, userid, totalmoney FROM itheima.orders o ;

-- 查询表有多少条数据
SELECT COUNT(*) FROM itheima.orders;

-- 过滤广东省的订单
SELECT * FROM itheima.orders WHERE useraddress LIKE '%广东%';

-- 找出广东省单笔营业额最大的订单
SELECT * FROM itheima.orders WHERE useraddress LIKE '%广东%'
ORDER BY totalmoney DESC LIMIT 1;

-- 统计未支付、已支付各自的人数
SELECT ispay, COUNT(*) FROM itheima.orders o GROUP BY ispay ;

-- 在已付款的订单中,统计每个用户最高的一笔消费金额
SELECT userid, MAX(totalmoney) FROM itheima.orders WHERE ispay = 1 GROUP BY userid;
-- 统计每个用户的平均订单消费额
SELECT userid, AVG(totalmoney) FROM itheima.orders GROUP BY userid;
-- 统计每个用户的平均订单消费额,并过滤大于10000的数据
SELECT userid, AVG(totalmoney) AS avg_money FROM itheima.orders GROUP BY userid HAVING avg_money > 10000;

-- 订单表和用户表JOIN 找出用户username
SELECT o.orderid, o.userid, u.username FROM itheima.orders o JOIN itheima.users u ON o.userid = u.userid;
SELECT o.orderid, o.userid, u.username FROM itheima.orders o LEFT JOIN itheima.users u ON o.userid = u.userid;

RLIKE

image-20230224234706719

image-20230224234719463

image-20230224234733895

-- 查找广东省数据
SELECT * FROM itheima.orders WHERE useraddress RLIKE '.*广东.*';
-- 查找用户地址是:xx省 xx市 xx区
SELECT * FROM itheima.orders WHERE useraddress RLIKE '..省 ..市 ..区';
-- 查找用户姓为:张、王、邓
SELECT * FROM itheima.orders WHERE username RLIKE '[张王邓]\\S+';
-- 查找手机号符合:188****0*** 规则
SELECT * FROM itheima.orders WHERE userphone RLIKE '188\\S{4}0[0-9]{3}';

UNION联合

CREATE TABLE itheima.course(
c_id string, 
c_name string, 
t_id string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

LOAD DATA LOCAL INPATH '/home/hadoop/course.txt' INTO TABLE itheima.course;
-- 基础UNION
SELECT * FROM itheima.course WHERE t_id = '周杰轮'
	UNION
SELECT * FROM itheima.course WHERE t_id = '王力鸿';
-- 去重演示
SELECT * FROM itheima.course
	UNION
SELECT * FROM itheima.course;
-- 不去重
SELECT * FROM itheima.course
	UNION ALL
SELECT * FROM itheima.course;
-- UNION写在FROM中 UNION写在子查询中
SELECT t_id, COUNT(*) FROM 
(
	SELECT * FROM itheima.course WHERE t_id = '周杰轮'
		UNION ALL
	SELECT * FROM itheima.course WHERE t_id = '王力鸿' 
) AS u GROUP BY t_id;

-- 用于INSERT SELECT
INSERT OVERWRITE TABLE itheima.course2
SELECT * FROM itheima.course 
	UNION
SELECT * FROM itheima.course;

Sampling采样

# 随机桶抽取, 分配桶是有规则的
# 可以按照列的hash取模分桶
# 按照完全随机分桶
-- 其它条件不变的话,每一次运行结果一致
select username, orderId, totalmoney FROM itheima.orders 
	tablesample(bucket 3 out of 10 on username);
	
-- 完全随机,每一次运行结果不同
select * from itheima.orders 
	tablesample(bucket 3 out of 10 on rand());
	


# 数据块抽取,按顺序抽取,每次条件不变,抽取结果不变
-- 抽取100条
select * from itheima.orders
	tablesample(100 rows);
	
-- 取1%数据
select * from itheima.orders
	tablesample(1 percent);
	
-- 取 1KB数据
select * from itheima.orders
	tablesample(1K);

虚拟列

虚拟列是Hive内置的可以在查询语句中使用的特殊标记,可以查询数据本身的详细参数。

Hive目前可用3个虚拟列:

- INPUT__FILE__NAME,显示数据行所在的具体文件
- BLOCK__OFFSET__INSIDE__FILE,显示数据行所在文件的偏移量
- ROW__OFFSET__INSIDE__BLOCK,显示数据所在HDFS块的偏移量
  此虚拟列需要设置:SET hive.exec.rowoffset=true 才可使用
SET hive.exec.rowoffset=true;

SELECT orderid, username, INPUT__FILE__NAME, BLOCK__OFFSET__INSIDE__FILE, ROW__OFFSET__INSIDE__BLOCK FROM itheima.orders;

SELECT *, BLOCK__OFFSET__INSIDE__FILE FROM itheima.orders WHERE BLOCK__OFFSET__INSIDE__FILE < 1000;

SELECT orderid, username, INPUT__FILE__NAME, BLOCK__OFFSET__INSIDE__FILE, ROW__OFFSET__INSIDE__BLOCK FROM itheima.orders_bucket;

SELECT INPUT__FILE__NAME, COUNT(*) FROM itheima.orders_bucket GROUP BY INPUT__FILE__NAME;

函数

数值、集合、转换、日期函数

-- 查看所有可用函数
show functions;
-- 查看函数使用方式
describe function extended count;
-- 数值函数
-- round 取整,设置小数精度
select round(3.1415926);		-- 取整(四舍五入)
select round(3.1415926, 4);		-- 设置小数精度4位(四舍五入)
-- 随机数
select rand();					-- 完全随机
select rand(3);					-- 设置随机数种子,设置种子后每次运行结果一致的
-- 绝对值
select abs(-3);
-- 求PI
select pi();

-- 集合函数
-- 求元素个数
select size(work_locations) from test_array;
select size(members) from test_map;
-- 取出map的全部key
select map_keys(members) from test_map;
-- 取出map的全部value
select map_values(members) from test_map;
-- 查询array内是否包含指定元素,是就返回True
select * from test_array where ARRAY_CONTAINS(work_locations, 'tianjin');
-- 排序
select *, sort_array(work_locations) from test_array;


-- 类型转换函数
-- 转二进制
select binary('hadoop');
-- *转换,类型转换失败报错或返回NULL
select cast('1' as bigint);

-- 日期函数
-- 当前时间戳
select current_timestamp();
-- 当前日期
select current_date();
-- 时间戳转日期
select to_date(current_timestamp());
-- 年月日季度等
select year('2020-01-11');
select month('2020-01-11');
select day('2020-01-11');
select quarter('2020-05-11');
select dayofmonth('2020-05-11');
select hour('2020-05-11 10:36:59');
select minute('2020-05-11 10:36:59');
select second('2020-05-11 10:36:59');