在前一个教程中,我们将使用墨尔本住房数据集。
我们将不关注数据加载步骤。相反,您可以想象您已经拥有了 X _ train、 X _ valid、 y _ train 和 y _ valid
中的训练和验证数据。
In [1]:
import pandas as pd
from sklearn.model_selection import train_test_split
#读取数据
data = pd.read_csv('E:/data_handle/melb_data.csv')
#从预测器中分离目标
y =data.Price
X = data.drop(['Price'],axis=1)
#将数据划分为训练和验证子集
X_train_full, X_valid_full, y_train, y_valid = train_test_split(X, y, train_size=0.8,test_size=0.2,random_state=0