把ChatGPT接入我的个人网站

时间:2021-12-06 01:27:31

效果图

把ChatGPT接入我的个人网站

详细内容和使用说明可以查看我的个人网站文章 把ChatGPT接入我的个人网站

献给有外网服务器的小伙伴

如果你本人已经有一台外网的服务器,并且页拥有一个OpenAI API Key,那么下面就可以参照我的教程来搭建一个自己的ChatGPT。

需要的环境

  • Centos7(其他服务器也行)
  • nodejs

这里主要用到了node环境,所有的代码也是由JavaScript编写

安装依赖库

首先需要安装OpenAI提供的js库——openai,使用npm安装即可

npm install openai

然后再安装一个用于后面管理js后台运行的库——forever

npm install forever

编写代码

const WebSocket = require('ws')
const {Configuration, OpenAIApi} = require('openai')

const wss = new WebSocket.Server({port:8080})
const config = new Configuration({apiKey: 'OPENAI_API_KEY'}); //这里的OPENAI_API_KEY是你自己的key

const openai = new OpenAIApi(config);

const welcomeStr = "Hello,我是胡海龙,这是我基于OpenAI搭建的类似ChatWindow,你可以像使用ChatGPT一样来使用它,如何搭建以及源码可以联系我:hhlworkspace@qq.com";

wss.on('connection', ws=>{
    ws.on('message', async (message)=>{
        if(message =='[$check$]'){
                ws.send('[$alive$]')
        }else{
                const completion = await openai.createCompletion({
                        model: 'text-davinci-003',
                        prompt: ''+message,
                        max_tokens: 2048,
                        stream: true,
                        user: 'huhailong1121'
                },{responseType: 'stream'});
                completion.data.on("data",(data)=>{
                        const lines = data
                        ?.toString()
                        ?.split("\n")
                        .filter((line) => line.trim() !== "");
                        for (const line of lines) {
                                const message = line.replace(/^data: /, "");
                                if (message === "[DONE]") {
                                        break; // Stream finished
                                }
                                try {
                                        const parsed = JSON.parse(message);
                                        ws.send(parsed.choices[0].text)
                                } catch (error) {
                                        console.error("Could not JSON parse stream message", message, error);
                                }
                         }
                })

        }
    })
})

上面的代码含义:开启一个Websocket服务,然后接收到用户发送的消息后,使用openai库发起请求,然后把返回的数据推给前端用户,前端用户接收的时候用解析markdown的组件接收就可以。下面主要说一下请求openai的部分

const {Configuration, OpenAIApi} = require('openai')
const config = new Configuration({apiKey: 'OPENAI_API_KEY'});

const openai = new OpenAIApi(config);

const completion = await openai.createCompletion({
                        model: 'text-davinci-003',
                        prompt: ''+message,
                        max_tokens: 2048,
                        stream: true,
                        user: 'huhailong1121'
                },{responseType: 'stream'});
                completion.data.on("data",(data)=>{
                        const lines = data
                        ?.toString()
                        ?.split("\n")
                        .filter((line) => line.trim() !== "");
                        for (const line of lines) {
                                const message = line.replace(/^data: /, "");
                                if (message === "[DONE]") {
                                        break; // Stream finished
                                }
                                try {
                                        const parsed = JSON.parse(message);
                                        ws.send(parsed.choices[0].text)
                                } catch (error) {
                                        console.error("Could not JSON parse stream message", message, error);
                                }
                         }
                })

首先是引入openai库中的 Configuration, OpenAIApi,然后配置apiKey,配置好以后创建请求——openai.createCompletion,注意,这里要使用同步去处理以下,参数的含义:

  • model:使用的模型,目前新的模型是text-davinci-003
  • prompt:用户的提问和需求
  • max_tokens:这个参数决定了能一次返回多少长度的结果,如果不是用stream的话这个设置的小可能会导致结果被截断
  • stream:是否使用流方式返回结果,我这里使用了流方式返回结果,因为这样可以给用户更全的数据,不会截断,而且不会造成长时间阻塞,可以实时的动态的生成结果,给用户的体验更好
  • user:用户标识,这个不设置也可以,还有其他更多的参数可以参考网上的资料

使用流后需要对data进行监听,监听中将返回的流先转为字符串,然后通过换行截取,去掉头部的data字符串后剩余的可以转为一个json对象,其中choices数组里面的text就是我们要的结果,所以将它发送给用户即可。

前端代码相对简单,就是单纯的websocket接收数据,然后渲染,只是样式上需要设计和调整,如果有需要前端代码的小伙伴也可以联系我,无偿分享,联系方式见文章上半部分。