蓝桥杯最终测试

时间:2022-09-26 01:23:22

本次测试包含基本底层——在不冲突的条件下,其包含了数码管, led,按键, DS13B20,DS1302,EEMPRO,串口的使用,等明天会更新其他的NE555(5位)以及超声波的使用

hc573.c

#include <STC15F2K60S2.H>

void SelectHC573(unsigned char n)
{
	switch(n)
  {
		case 4:
			P2 = (P2&0x1f)|0x80;
		P2 &= 0x1f;
			break;
		
		case 5:
			P2 = (P2&0x1f)|0xa0;
		P2 &= 0x1f;
			break;
		
		case 6:
			P2 = (P2&0x1f)|0xc0;
		P2 &= 0x1f;
			break;
		
		case 7:
			P2 = (P2&0x1f)|0xe0;
		P2 &= 0x1f;
			break;
	}
}

led.c

#include <STC15F2K60S2.H>
#include "hc573.h"

void Led_Disp(unsigned char addr,enable)
{
	static unsigned char temp = 0x00;
	static unsigned char temp_old = 0xff;
	
	if(enable)
		temp |= 0x01<<addr;
	else 
		temp &= ~(0x01<<addr);
	
	if(temp != temp_old)
	{
		P0 = ~temp;
		SelectHC573(4);
		temp_old = temp;
	}
	
}


void Beep(unsigned char flag)
{
	static unsigned char temp = 0x00;
	static unsigned char temp_old = 0xff;
	
	if(flag)
		temp |= 0x40;
	else 
		temp &= ~0x40;
	
	if(temp != temp_old)
	{
		P0 = temp;
		SelectHC573(5);
		temp_old = temp;
	}
	
}

void Relay(unsigned char flag)
{
	static unsigned char temp = 0x00;
	static unsigned char temp_old = 0xff;
	
	if(flag)
		temp |= 0x40;
	else 
		temp &= ~0x40;
	
	if(temp != temp_old)
	{
		P0 = temp;
		SelectHC573(5);
		temp_old = temp;
	}
	
}

key.c

#include <STC15F2K60S2.H>
#include "hc573.h"

unsigned char Key_Read()
{
	unsigned char temp=0;
	P44=0;P42=1;P35=1;P34=1;
	if(P33==0) temp=4;
	if(P32==0) temp=5;
	if(P31==0) temp=6;
	if(P30==0) temp=7;
	
	P44=1;P42=0;P35=1;P34=1;
	if(P33==0) temp=8;
	if(P32==0) temp=9;
	if(P31==0) temp=10;
	if(P30==0) temp=11;
	
	P44=1;P42=1;P35=0;P34=1;
	if(P33==0) temp=12;
	if(P32==0) temp=13;
	if(P31==0) temp=14;
	if(P30==0) temp=15;
	
	P44=1;P42=1;P35=1;P34=0;
	if(P33==0) temp=16;
	if(P32==0) temp=17;
	if(P31==0) temp=18;
	if(P30==0) temp=19;
	
	return temp;
}

seg.h

#include <STC15F2K60S2.H>
#include "hc573.h"


unsigned char code seg_dula[] = 
{
0xc0, //0
0xf9, //1
0xa4, //2
0xb0, //3
0x99, //4
0x92, //5
0x82, //6
0xf8, //7
0x80, //8
0x90, //9
0xff,
0x88, //A
0x83, //b
0xc6, //C
0xa1, //d
0x86, //E
0x8e //F
};

unsigned char code seg_wela[]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80};

void Seg_Disp(unsigned char wela,dula,point)
{
	P0 = 0xff;
	
	SelectHC573(7);
	P0 = seg_wela[wela];
	
	SelectHC573(6);
	P0 = seg_dula[dula];
	
	if(point)
		P0 &= 0x7f;
	SelectHC573(7);
	
}

init.c 初始化函数

#include <STC15F2K60S2.H>
#include "hc573.h"

void Init()
{
	P0 = 0xff;
	SelectHC573(4);
	
	P0 = 0x00;
	SelectHC573(5);
}

onewire.c 温度传感器

/*	# 	单总线代码片段说明
	1. 	本文件夹中提供的驱动代码供参赛选手完成程序设计参考。
	2. 	参赛选手可以自行编写相关代码或以该代码为基础,根据所选单片机类型、运行速度和试题
		中对单片机时钟频率的要求,进行代码调试和修改。
*/
/* 温度模块 */

#include "reg52.h"
#include "intrins.h"

sbit DQ = P1^4;

//
void Delay_OneWire(unsigned int t)  
{
	unsigned char i;
	while(t--){
		for(i=0;i<12;i++);
	}
}

//
void Write_DS18B20(unsigned char dat)
{
	unsigned char i;
	for(i=0;i<8;i++)
	{
		DQ = 0;
		DQ = dat&0x01;
		Delay_OneWire(5);
		DQ = 1;
		dat >>= 1;
	}
	Delay_OneWire(5);
}

//
unsigned char Read_DS18B20(void)
{
	unsigned char i;
	unsigned char dat;
  
	for(i=0;i<8;i++)
	{
		DQ = 0;
		dat >>= 1;
		DQ = 1;
		if(DQ)
		{
			dat |= 0x80;
		}	    
		Delay_OneWire(5);
	}
	return dat;
}

//
bit init_ds18b20(void)
{
  	bit initflag = 0;
  	
  	DQ = 1;
  	Delay_OneWire(12);
  	DQ = 0;
  	Delay_OneWire(80);
  	DQ = 1;
  	Delay_OneWire(10); 
    initflag = DQ;     
  	Delay_OneWire(5);
  
  	return initflag;
}


float rd_temp()
{
	unsigned char high,low;
	init_ds18b20();
	Write_DS18B20(0xcc);
	Write_DS18B20(0x44);
	// 先转化,再读取,看顺序,手册
	
	init_ds18b20();
	Write_DS18B20(0xcc);
	Write_DS18B20(0xbe);
	
	low = Read_DS18B20();
	high = Read_DS18B20();
	
	return ((high<<8)|low)/16.0;
	
}

iic.c 包含EEMPROM 与 DAC与ADC

/*	#   I2C代码片段说明
	1. 	本文件夹中提供的驱动代码供参赛选手完成程序设计参考。
	2. 	参赛选手可以自行编写相关代码或以该代码为基础,根据所选单片机类型、运行速度和试题
		中对单片机时钟频率的要求,进行代码调试和修改。
*/
#include "reg52.h"
#include "intrins.h"

sbit scl = P2^0;
sbit sda = P2^1;


#define DELAY_TIME	5

//
static void I2C_Delay(unsigned char n)
{
    do
    {
        _nop_();_nop_();_nop_();_nop_();_nop_();
        _nop_();_nop_();_nop_();_nop_();_nop_();
        _nop_();_nop_();_nop_();_nop_();_nop_();		
    }
    while(n--);      	
}

//
void I2CStart(void)
{
    sda = 1;
    scl = 1;
	I2C_Delay(DELAY_TIME);
    sda = 0;
	I2C_Delay(DELAY_TIME);
    scl = 0;    
}

//
void I2CStop(void)
{
    sda = 0;
    scl = 1;
	I2C_Delay(DELAY_TIME);
    sda = 1;
	I2C_Delay(DELAY_TIME);
}

//
void I2CSendByte(unsigned char byt)
{
    unsigned char i;
	
    for(i=0; i<8; i++){
        scl = 0;
		I2C_Delay(DELAY_TIME);
        if(byt & 0x80){
            sda = 1;
        }
        else{
            sda = 0;
        }
		I2C_Delay(DELAY_TIME);
        scl = 1;
        byt <<= 1;
		I2C_Delay(DELAY_TIME);
    }
	
    scl = 0;  
}

//
unsigned char I2CReceiveByte(void)
{
	unsigned char da;
	unsigned char i;
	for(i=0;i<8;i++){   
		scl = 1;
		I2C_Delay(DELAY_TIME);
		da <<= 1;
		if(sda) 
			da |= 0x01;
		scl = 0;
		I2C_Delay(DELAY_TIME);
	}
	return da;    
}

//
unsigned char I2CWaitAck(void)
{
	unsigned char ackbit;
	
    scl = 1;
	I2C_Delay(DELAY_TIME);
    ackbit = sda; 
    scl = 0;
	I2C_Delay(DELAY_TIME);
	
	return ackbit;
}

//
void I2CSendAck(unsigned char ackbit)
{
    scl = 0;
    sda = ackbit; 
	I2C_Delay(DELAY_TIME);
    scl = 1;
	I2C_Delay(DELAY_TIME);
    scl = 0; 
	sda = 1;
	I2C_Delay(DELAY_TIME);
}

unsigned char Ad_Read(unsigned char addr)
{
	unsigned char dat;
	I2CStart();
	I2CSendByte(0x90);
	I2CWaitAck();
	
	I2CSendByte(addr);
	I2CWaitAck();
	
	I2CStart();
	I2CSendByte(0x91);
	I2CWaitAck();
	
	dat = I2CReceiveByte();
	I2CSendAck(1);
	I2CStop();
	return dat;
}

void Da_Write(unsigned char temp)
{
	I2CStart();
	I2CSendByte(0x90);
	I2CWaitAck();
	
	I2CSendByte(0x40);
	I2CWaitAck();
	
	I2CSendByte(temp);
	I2CWaitAck();
	I2CStop();
}

void EMMPROM_Write(unsigned char *string,unsigned char addr,unsigned char num)
{
	I2CStart();
	I2CSendByte(0xa0);
	I2CWaitAck();
	
	I2CSendByte(addr);
	I2CWaitAck();
	
	while(num--)
	{
		I2CSendByte(*string++);
	  I2CWaitAck();
		I2C_Delay(200);
	}
	I2CStop();	
}

void EMMPROM_Read(unsigned char *string,unsigned char addr,unsigned char num)
{
	I2CStart();
	I2CSendByte(0xa0);
	I2CWaitAck();
	
	I2CSendByte(addr);
	I2CWaitAck();
	
	I2CStart();
	I2CSendByte(0xa1);
	I2CWaitAck();
	
	while(num--)
	{
		*string++ = I2CReceiveByte();
	  if(num) I2CSendAck(0);
		else I2CSendAck(1);
	}
	I2CStop();
}

ds1302.c 时钟函数

/*	# 	DS1302代码片段说明
	1. 	本文件夹中提供的驱动代码供参赛选手完成程序设计参考。
	2. 	参赛选手可以自行编写相关代码或以该代码为基础,根据所选单片机类型、运行速度和试题
		中对单片机时钟频率的要求,进行代码调试和修改。
*/						
#include "reg52.h"
#include "intrins.h"

sbit SCK = P1^7;
sbit RST = P1^3;
sbit SDA = P2^3;


unsigned char Write_addr[]={0x84,0x82,0x80};
unsigned char Read_addr[]={0x85,0x83,0x81};
//
void Write_Ds1302(unsigned  char temp) 
{
	unsigned char i;
	for (i=0;i<8;i++)     	
	{ 
		SCK = 0;
		SDA = temp&0x01;
		temp>>=1; 
		SCK=1;
	}
}   

//
void Write_Ds1302_Byte( unsigned char address,unsigned char dat)     
{
 	RST=0;	_nop_();
 	SCK=0;	_nop_();
 	RST=1; 	_nop_();  
 	Write_Ds1302(address);	
 	Write_Ds1302(dat);		
 	RST=0; 
}

//
unsigned char Read_Ds1302_Byte ( unsigned char address )
{
 	unsigned char i,temp=0x00;
 	RST=0;	_nop_();
 	SCK=0;	_nop_();
 	RST=1;	_nop_();
 	Write_Ds1302(address);
 	for (i=0;i<8;i++) 	
 	{		
		SCK=0;
		temp>>=1;	
 		if(SDA)
 		temp|=0x80;	
 		SCK=1;
	} 
 	RST=0;	_nop_();
 	SCK=0;	_nop_();
	SCK=1;	_nop_();
	SDA=0;	_nop_();
	SDA=1;	_nop_();
	return (temp);			
}

void Set_Rtc(unsigned char *ucRtc)
{
	unsigned char i;
	
	Write_Ds1302_Byte(0x8e,0x00);
	for(i=0;i<3;i++)
	{
		Write_Ds1302_Byte(Write_addr[i],ucRtc[i]);
	}
	Write_Ds1302_Byte(0x8e,0x80);
}

void Read_Rtc(unsigned char *ucRtc)
{
	unsigned char i;
	for(i=0;i<3;i++)
	ucRtc[i] = Read_Ds1302_Byte(Read_addr[i]);
}




uart.c 串口函数——发送与初始化  服务函数放在主函数

#include <STC15F2K60S2.H>
#include "intrins.h"

void UartInit(void)		//9600bps@12.000MHz,³õʼ»¯º¯Êý
{
	SCON = 0x50;		
	AUXR |= 0x01;		
	AUXR |= 0x04;		
	T2L = 0xC7;		
	T2H = 0xFE;		
	AUXR |= 0x10;		
	
	EA = 1;
	ES = 1;
}

void Send_Byte(unsigned char dat)
{
	SBUF = dat;
	while(TI == 0); //²»ÊÇ0¾ÍÍ˳ö
		TI = 0;	
}


void Send_String(unsigned char *dat)
{
	while(*dat != '\0')
		Send_Byte(*dat++);
}


 超声波,我们使用的是T1定时器,其中TH为高位TL为低位,TR为计数器,TF为溢出

wave.c

#include "reg52.h"
#include "intrins.h"

sbit Tx = P1^0;
sbit Rx = P1^1;

void Delay13us()		//@12.000MHz
{
	unsigned char i;

	_nop_();
	_nop_();
	i = 36;
	while (--i);
}



void Wave_Init()
{
		Tx = 1;
		Delay13us();
		Tx = 0;
		Delay13us();
}

unsigned int Rd_distance()
{
	unsigned int time=0;
	TMOD &= 0x0f;
	TH1 = TL1 = 0;
	Wave_Init();
	TR1 = 1; //¿ªÊ¼¼Æʱ
	while((Rx == 1)&&(TF1 == 0));
	TR1 = 0;
	
	if(TF1 == 0)
	{
		time = (TH1<<8)|TL1;
		return (time*0.017);
	}
	else 
	{
		TF1=0;
		return 0;
	}
}	
	
	
	



最后则是他们的使用 main.c

#include <STC15F2K60S2.H>
#include "led.h"
#include "init.h"
#include "seg.h"
#include "key.h"
#include "onewire.h"
#include "iic.h"
#include "ds1302.h"
#include "uart.h"
#include "wave.h"
#include <stdio.h>

/* ÉùÃ÷ÇøÓò */
unsigned char Key_val,Key_old,Key_down;
unsigned char Key_Slow_Down;

unsigned char Seg_Buf[]={10,10,10,10,10,10,10,10};
unsigned char Seg_Point[]={0,0,0,0,0,0,0,0};
unsigned char Seg_Pos;
unsigned int Seg_Slow_Down;

unsigned char ucLed[]={0,0,0,0,0,0,0,0};

unsigned char ucRtc[3] = {0x08,0x30,0x00};
unsigned char ucRtc_Index=0;
unsigned char Uart_Buf[12];
unsigned char Uart_num=0;

float temp;
float V_dat;
unsigned char V_Disp=35;

unsigned int distance;


unsigned char Seg_Mode;

/* °´¼üº¯Êý */
void Key_Proc()
{
	if(Key_Slow_Down) return;
	Key_Slow_Down = 1;
	
	Key_val = Key_Read();
	Key_down = Key_val&(Key_old^Key_val);
	Key_old = Key_val;
	
	switch(Key_down)
	{
		case 4:
			if(++Seg_Mode==5)
				Seg_Mode = 0;
			break;
		case 5:
			if(Seg_Mode==2)
			{
				V_Disp = V_Disp+5;
				if(V_Disp==95)
					V_Disp=0;
					
			}
			break;
		case 6:
			if(Seg_Mode==2)
			{
				V_Disp = V_Disp-5;
				if(V_Disp==0)
					V_Disp=95;
			}
			break;
			
		case 7:
			EMMPROM_Write(&V_Disp,0,1);
			break;
		
		case 8:
			sprintf(Uart_Buf,"V=%.2fV \r\n",V_dat);
			Send_String(Uart_Buf);
		break;
	}
}


/* ÊýÂë¹Üº¯Êý */
void Seg_Proc()
{
	if(Seg_Slow_Down) return;
	Seg_Slow_Down = 1;
	
	/* Êý¾Ý¶ÁÈ¡ÇøÓò */
	temp = rd_temp();
	V_dat = Ad_Read(0x03)/51.0;
	Read_Rtc(ucRtc); //¶Áȡʱ¼ä
	distance = Rd_distance();
	
	/* Êý¾ÝÏÔʾÇøÓò */
	switch(Seg_Mode)
	{
		case 0:
			Seg_Buf[0]=10;
		  Seg_Buf[1]=10;
      Seg_Buf[3]=10;
		  Seg_Buf[4]=10;
			Seg_Buf[5]=(unsigned char)temp/10;
		  Seg_Buf[6]=(unsigned char)temp%10;
		  Seg_Buf[7]=(unsigned char)(temp*10) % 10;
		  Seg_Point[6]=1;
			break;
		
		case 1:
			Seg_Buf[0]=10;
		  Seg_Buf[1]=10;
      Seg_Buf[3]=10;
		  Seg_Buf[4]=10;
			Seg_Buf[5]=(unsigned char)V_dat; // 0~5
		  Seg_Buf[6]=(unsigned char)(V_dat*10)%10;
		  Seg_Buf[7]=(unsigned char)(V_dat*100)%10;
		  Seg_Point[6]=0;
		  Seg_Point[5]=1;
			break;
		
		case 2:
			Seg_Buf[0]=10;
		  Seg_Buf[1]=10;
      Seg_Buf[3]=10;
		  Seg_Buf[4]=10;
			Seg_Buf[5]=0;
		  Seg_Buf[6]=V_Disp/10;
		  Seg_Buf[7]=V_Disp%10;
		  Seg_Point[6]=0;
		  Seg_Point[5]=0;
			break;
		
		case 3:
			Seg_Buf[0]=ucRtc[0]/16;
		  Seg_Buf[1]=ucRtc[0]%16;
      Seg_Buf[3]=ucRtc[1]/16;
		  Seg_Buf[4]=ucRtc[1]%16;
		  Seg_Buf[5]=10;
	  	Seg_Buf[6]=ucRtc[2]/16;
		  Seg_Buf[7]=ucRtc[2]%16;
			break;
		
		case 4:
			Seg_Buf[0]=10;
		  Seg_Buf[1]=10;
      Seg_Buf[3]=10;
		  Seg_Buf[4]=10;
		  Seg_Buf[5]=distance/100;
	  	Seg_Buf[6]=distance/10%10;
		  Seg_Buf[7]=distance%10;
			break;
	}
}


void Led_Proc()
{
	ucLed[0]=1;
}

void Uart_Proc()
{
	if(Uart_num != 0)
	{
		if(Uart_Buf[0]=='T'&&Uart_Buf[1]=='i'&&Uart_Buf[2]=='m'&&Uart_Buf[3]=='e')
		{
			Uart_num=0;
			sprintf(Uart_Buf,"V:is%.2fV\r\n",V_dat);
			Send_String(Uart_Buf);
			
		}
	}
}



void Timer0Init(void)		//1??@12.000MHz
{
	AUXR &= 0x7F;		//?????12T??
	TMOD &= 0xF0;		//???????
	TL0 = 0x18;		//??????
	TH0 = 0xFC;		//??????
	TF0 = 0;		//??TF0??
	TR0 = 1;		//???0????
	
	ET0 = 1;
	EA = 1;
}






void TimerServer() interrupt 1
{

	if(++Key_Slow_Down==10) Key_Slow_Down=0;
	if(++Seg_Slow_Down==500) Seg_Slow_Down=0;
	if(++Seg_Pos==8) Seg_Pos=0;
	
	Seg_Disp(Seg_Pos,Seg_Buf[Seg_Pos],Seg_Point[Seg_Pos]);
	Led_Disp(Seg_Pos,ucLed[Seg_Pos]);
}

void UartServer() interrupt 4
{
	if(RI == 1)
	{
		RI = 0;
		Uart_Buf[Uart_num]=SBUF; //½ÓÊÕÖÃ1£¬È»ºóÖÃ0£¬È»ºó°Ñ·¢Ë͵Ķ«Î÷·Åµ½Êý×éÀï
		Uart_num++;
	}
		
}

void main()
{
	Set_Rtc(ucRtc);
	Init();
	EMMPROM_Read(&V_Disp,0,1);
	Timer0Init();
	UartInit();
	while(1)
	{
		Uart_Proc();
		Seg_Proc();
		Led_Proc();
		Key_Proc();
		
		
	}
}

最后的几天搞定这一篇,明白所有的使用方法,注意的是内存函数那可能出现显示问题,注意需要那个值放入,哪个值显示,可以进行切换尝试一下

同时注意定时器是否有打开,使用什么中断

对于按键长按,如果让他跳的话,就会跳的很快,如果加上延时的话,就没办法显示,所以我在按键中又进行了显示

 if(Key_down == 15)
			Time_Flag=1;
	 if(count<500)
	{
		if(Key_up == 15)
		{
			Time_Flag=count=0;
			temp++;
		}
	}
	else
	{
		if(Key_old == 15)
		{
			Delay500ms();
			Seg_Buf[0]=11;
			Seg_Buf[6]=temp/10;
		  Seg_Buf[7]=temp%10;
			temp++;
			if(temp==100)
				temp =99;
		}
		if(Key_up == 15)
			Time_Flag=count=0;
	}