
1076: [SCOI2008]奖励关
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1602 Solved: 891
[Submit][Status][Discuss]
Description
你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。
获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。
假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?
Input
第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随
后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。
Output
输出一个实数,保留六位小数,即在最优策略下平均情况的得分。
Sample Input
1 0
2 0
Sample Output
HINT
【数据规模】
1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。
Solution
由于n很小,我们可以考虑状压DP。
如果顺推的话,我们会发现有一个问题,那就是当前遇到某个物品,我选或者不选,怎样才是最优的,这个很难判断。
因此,我们可以考虑记忆化搜索或者逆推,这样就能判断怎样选才是最优的。
逆推写起来比较的简洁。
Code
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm> using namespace std; #define REP(i, a, b) for (int i = (a), i##_end_ = (b); i <= i##_end_; ++i)
#define DWN(i, a, b) for (int i = (a), i##_end_ = (b); i >= i##_end_; --i)
const int MAXN = , MAXK = ;
int n, k, w[MAXN], state[MAXN];
double f[MAXK][<<MAXN]; int main()
{
scanf("%d %d", &k, &n);
REP(i, , n)
{
scanf("%d", &w[i]);
int x; state[i] = ;
while (~scanf("%d", &x) && x != ) state[i] += (<<(x-));
}
DWN(i, k, )
REP(j, , ((<<n)-))
{
REP(k, , n)
if ((j&state[k]) == state[k]) f[i][j] += max(f[i+][j], f[i+][j|(<<(k-))]+w[k]);
else f[i][j] += f[i+][j];
f[i][j] /= n;
}
printf("%.6lf\n", f[][]);
return ;
}