本文实例为大家分享了python dlib人脸识别的具体代码,供大家参考,具体内容如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
import matplotlib.pyplot as plt
import dlib
import numpy as np
import glob
import re
#正脸检测器
detector = dlib.get_frontal_face_detector()
#脸部关键形态检测器
sp = dlib.shape_predictor(r "d:\lb\javascript\shape_predictor_68_face_landmarks.dat" )
#人脸识别模型
facerec = dlib.face_recognition_model_v1(r "d:\lb\javascript\dlib_face_recognition_resnet_model_v1.dat" )
#候选人脸部描述向量集
descriptors = []
photo_locations = []
for photo in glob.glob(r 'd:\lb\javascript\faces\*.jpg' ):
photo_locations.append(photo)
img = plt.imread(photo)
img = np.array(img)
#开始检测人脸
dets = detector(img, 1 )
for k,d in enumerate (dets):
#检测每张照片中人脸的特征
shape = sp(img,d)
face_descriptor = facerec.compute_face_descriptor(img,shape)
v = np.array(face_descriptor)
descriptors.append(v)
#输入的待识别的人脸处理方法相同
img = plt.imread(r 'd:\test_photo10.jpg' )
img = np.array(img)
dets = detector(img, 1 )
#计算输入人脸和已有人脸之间的差异程度(比如用欧式距离来衡量)
differences = []
for k,d in enumerate (dets):
shape = sp(img,d)
face_descriptor = facerec.compute_face_descriptor(img,shape)
d_test = np.array(face_descriptor)
#计算输入人脸和所有已有人脸描述向量的欧氏距离
for i in descriptors:
distance = np.linalg.norm(i - d_test)
differences.append(distance)
#按欧式距离排序 欧式距离最小的就是匹配的人脸
candidate_count = len (photo_locations)
candidates_dict = dict ( zip (photo_locations,differences))
candidates_dict_sorted = sorted (candidates_dict.items(),key = lambda x:x[ 1 ])
#matplotlib要正确显示中文需要设置
plt.rcparams[ 'font.family' ] = [ 'sans-serif' ]
plt.rcparams[ 'font.sans-serif' ] = [ 'simhei' ]
plt.rcparams[ 'figure.figsize' ] = ( 20.0 , 70.0 )
ax = plt.subplot(candidate_count + 1 , 4 , 1 )
ax.set_title( "输入的人脸" )
ax.imshow(img)
for i,(photo,distance) in enumerate (candidates_dict_sorted):
img = plt.imread(photo)
face_name = ""
photo_name = re.search(r '([^\\]*)\.jpg$' ,photo)
if photo_name:
face_name = photo_name[ 1 ]
ax = plt.subplot(candidate_count + 1 , 4 ,i + 2 )
ax.set_xticks([])
ax.set_yticks([])
ax.spines[ 'top' ].set_visible(false)
ax.spines[ 'right' ].set_visible(false)
ax.spines[ 'bottom' ].set_visible(false)
ax.spines[ 'left' ].set_visible(false)
if i = = 0 :
ax.set_title( "最匹配的人脸\n\n" + face_name + "\n\n差异度:" + str (distance))
else :
ax.set_title(face_name + "\n\n差异度:" + str (distance))
ax.imshow(img)
plt.show()
|
以上所述是小编给大家介绍的python dlib人脸识别详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对服务器之家网站的支持!
原文链接:https://blog.csdn.net/MAILLIBIN/article/details/88979691