python 与 C++ dlib人脸检测结果对比,供大家参考,具体内容如下
说明:
由于项目需求发现Linux下c++使用dlib进行人脸检测和python使用dlib检测,得到的结果出入比较大,于是写了测试用例,发现影响结果的原因有但不限于:
1.dlib版本不同(影响不大,几个像素的差别)
2.dlib 人脸检测中detector()第二个参数的设置测试结果如下:
python
PDlib.py:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
# -*- coding: utf-8 -*-
import sys
import cv2
import dlib
from skimage import io
detector = dlib.get_frontal_face_detector()
win = dlib.image_window()
for f in sys.argv[ 1 :]:
img = io.imread(f)
dets = detector(img, 1 ) #使用detector进行人脸检测
for i, d in enumerate (dets):
x = d.left()
y = d.top()
w = d.right()
h = d.bottom()
cv2.rectangle(img, (x, y), (w, h), ( 0 , 255 , 0 ))
print ( "({},{},{},{})" . format ( x, y, (w - x), (h - y)))
win.set_image(img)
io.imsave( './P_Dlib_test.jpg' ,img)
#等待点击
dlib.hit_enter_to_continue()
|
C++
CDlib.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/opencv.h>
#include "opencv2/opencv.hpp"
#include <iostream>
using namespace dlib;
using namespace std;
cv::Rect Detect(cv::Mat im)
{
cv::Rect R;
frontal_face_detector detector = get_frontal_face_detector();
array2d<bgr_pixel> img;
assign_image(img, cv_image<uchar>(im));
std::vector<rectangle> dets = detector(img); //检测人脸
//查找最大脸
if (dets.size() != 0)
{
int Max = 0;
int area = 0;
for (unsigned long t = 0; t < dets.size(); ++t)
{
if (area < dets[t].width()*dets[t].height())
{
area = dets[t].width()*dets[t].height();
Max = t;
}
}
R.x = dets[Max].left();
R.y = dets[Max].top();
R.width = dets[Max].width();
R.height = dets[Max].height();
cout<< "(" <<R.x<< "," <<R.y<< "," <<R.width<< "," <<R.height<< ")" <<endl;
}
return R;
}
int main( int argc, char ** argv)
{
if (argc != 2) {
fprintf (stderr, "请输入正确参数\n" );
return 1;
}
string path = argv[1];
try
{
cv::Mat src, dec;
src = cv::imread(path);
src.copyTo(dec);
cv::cvtColor(dec, dec, CV_BGR2GRAY);
cv::Rect box;
box = Detect(dec);
cv::rectangle(src, box, cv::Scalar(0, 0, 255), 1, 1, 0);
cv::imshow( "frame" , src);
cv::imwrite( "./C_Dlib_test.jpg" , src);
cv::waitKey(0); //等待建入
}
catch (exception& e)
{
cout << e.what() << endl;
}
}
|
项目编译及运行
python
运行脚本 python PDlib.py G:\DlibTest\data\bush.jpg
C++
- 创建编译文件夹 mkdir cbuild
- 切换到编译目录 cd cbuild
- 生成makefile文件 cmake ..
- 编译项目 make
- 运行可执行文件 ./DlibTest G:\DlibTest\data\bush.jpg
Demo:点击下载
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/u011045727/article/details/55505598