CF940B Our Tanya is Crying Out Loud

时间:2023-03-10 05:36:02
CF940B Our Tanya is Crying Out Loud
Our Tanya is Crying Out Loud
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Right now she actually isn't. But she will be, if you don't solve this problem.

You are given integers nkA and B. There is a number x, which is initially equal to n. You are allowed to perform two types of operations:

  1. Subtract 1 from x. This operation costs you A coins.
  2. Divide x by k. Can be performed only if x is divisible by k. This operation costs you B coins.

What is the minimum amount of coins you have to pay to make x equal to 1?

Input

The first line contains a single integer n (1 ≤ n ≤ 2·109).

The second line contains a single integer k (1 ≤ k ≤ 2·109).

The third line contains a single integer A (1 ≤ A ≤ 2·109).

The fourth line contains a single integer B (1 ≤ B ≤ 2·109).

Output

Output a single integer — the minimum amount of coins you have to pay to make x equal to 1.

Examples
input
Copy
9
2
3
1
output
6
input
Copy
5
5
2
20
output
8
input
Copy
19
3
4
2
output
12
Note

In the first testcase, the optimal strategy is as follows:

  • Subtract 1 from x (9 → 8) paying 3 coins.
  • Divide x by 2 (8 → 4) paying 1 coin.
  • Divide x by 2 (4 → 2) paying 1 coin.
  • Divide x by 2 (2 → 1) paying 1 coin.

The total cost is 6 coins.

In the second test case the optimal strategy is to subtract 1 from x 4 times paying 8 coins in total.

题目的意思是给你两种操作,一种是每次减1消耗a元,一种是每次除以k每次消耗b元。使n变成1的最小消耗。

在每次没有达到k的倍数前,只能减一,达到后判断下消耗是减去还是除以小,选小的。

#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define maxn 100010
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
int main() {
ll n,k,a,b;
while( cin >> n >> k >> a >> b ) {
ll ans = ;
if( k == ) {
cout << ( n - ) * a << endl;
continue;
}
while( n != ) {
if( n % k == ) {
ans += min( ( n - n / k ) * a, b );
n /= k;
} else if( n > k ) {
ans += ( n % k ) * a;
n -= n % k;
} else {
ans += ( n - ) * a;
n = ;
}
}
cout << ans << endl;
}
return ;
}