最长公共子序列也是动态规划中的一个经典问题。
有两个字符串 S1 和 S2,求一个最长公共子串,即求字符串 S3,它同时为 S1 和 S2 的子串,且要求它的长度最长,并确定这个长度。这个问题被我们称为最长公共子序列问题。
与求最长递增子序列一样,我们首先将原问题分割成一些子问题,我们用 dp[i][j]表示 S1 中前 i 个字符与 S2 中前 j 个字符分别组成的两个前缀字符串的最长公共子串长度。
显然的,当 i、 j 较小时我们可以直接得出答案,如 dp[0][j]必等于 0。那么,假设我们已经求得 dp[i][j](0<=i<x,0<=j<y)的所有值,考虑如何由这些值继而推得 dp[x][y],求得 S1 前 x 个字符组成的前缀子串和 S2 前 y 个字符 组成的前缀子串的最长公共子序列长度。若 S1[x] = =S2[y],即 S1 中的第 x 个字 符和 S2 中的第 y 个字符相同,同时由于他们都是各自前缀子串的最后一个字符, 那么必存在一个最长公共子串以 S1[x]或 S2[y]结尾,其它部分等价于 S1 中前 x-1 个字符和 S2中前 y-1个字符的最长公共子串。所以这个子串的长度比 dp[x-1][y-1] 又增加 1,即 dp[x][y] = dp[x-1][y-1] + 1。
相反的,若 S1[x] != S2[y],此时其最长 公共子串长度为 S1 中前 x-1 个字符和 S2 中前 y 个字符的最长公共子串长度与 S1 中前 x 个字符和 S2 中前 y-1 个字符的最长公共子串长度的较大者,即在两种 情况下得到的最长公共子串都不会因为其中一个字符串又增加了一个字符长度 发生改变。综上所述, dp[x][y] = max{dp[x-1][y],dp[x][y-1]}。
最长公共子序列的递推条件
假设有两个字符串S1和S2,其中S1的长度为n,S2的长度为m,用dp[i][j]表示S1前i个字符组成的前缀子串与S2前j个字符组成的前缀子串的最长公共子串长度,如下:
dp[0][j] = dp[i][0] = 0,其中j>=0 && j<=m,i>=0 && i<=n;
dp[i][j] = dp[i-1][j-1]+1;(S1[i] = S2[j])
dp[i][j] = max{dp[i-1][j],dp[i][j-1]};(S1[i] != S2[j])
最后可以求得dp[n][m]中保存的值即为两个原始字符串的最长公共子序列长度。
按照上面的公式可以写出最长公共子序列的算法
#include "stdafx.h"
#include <iostream>
#include <string>
using namespace std; #define MAXSIZE 101
char str1[MAXSIZE];
char str2[MAXSIZE];
//'l'表示dp[i][j] = dp[i][j] = dp[i - 1][j];
//‘q’表示dp[i][j] = dp[i][j] = dp[i - 1][j];
//'u'表示dp[i][j] = dp[i][j - 1];
char path[MAXSIZE][MAXSIZE];
int dp[MAXSIZE][MAXSIZE]; void printLCS(int i, int j)
{
if (i == || j == )
return;
if (path[i][j] == 'q')
{
printLCS(i - , j - );
cout << str1[i-] << ' ';
}
else if (path[i][j] == 'u')
printLCS(i - , j);
else
printLCS(i, j - ); } int main()
{
int n, m;
cin >> str1 >> str2;
n = strlen(str1);
m = strlen(str2);
//初始化
for (int i = ; i < n;i++)
for (int j = ; j < m; j++)
dp[i][j] = ;
for (int i = ; i <= n; i++)
for (int j = ; j <= m; j++)
{
if (str1[i - ] == str2[j - ])
{
dp[i][j] = dp[i - ][j - ] + ;
path[i][j] = 'q';
} else
{
if (dp[i - ][j] >= dp[i][j - ])
{
dp[i][j] = dp[i - ][j];
path[i][j] = 'u';
} else
{
dp[i][j] = dp[i][j - ];
path[i][j] = 'l';
} }
} cout << dp[n][m] << endl;
printLCS(n, m);
return ;
}
测试实例:
str1 = “abcbdab”;str2 = "bdcaba"。
输出如下:
虽然str1和str2的最长公共子序列有多个,根据dp[n][m]进行递归输出,只输出一个最长公共子序列。
动态规划 - 最长公共子序列(LCS)的更多相关文章
-
动态规划 最长公共子序列 LCS,最长单独递增子序列,最长公共子串
LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列, ...
-
动态规划----最长公共子序列(LCS)问题
题目: 求解两个字符串的最长公共子序列.如 AB34C 和 A1BC2 则最长公共子序列为 ABC. 思路分析:可以用dfs深搜,这里使用到了前面没有见到过的双重循环递归.也可以使用动态规划,在建 ...
-
动态规划——最长公共子序列LCS及模板
摘自 https://www.cnblogs.com/hapjin/p/5572483.html 这位大佬写的对理解DP也很有帮助,我就直接摘抄过来了,代码部分来自我做过的题 一,问题描述 给定两个字 ...
-
动态规划之最长公共子序列LCS(Longest Common Subsequence)
一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...
-
《算法导论》读书笔记之动态规划—最长公共子序列 &; 最长公共子串(LCS)
From:http://my.oschina.net/leejun2005/blog/117167 1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要 ...
-
编程算法 - 最长公共子序列(LCS) 代码(C)
最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...
-
C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解
版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...
-
1006 最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...
-
POJ 1458 Common Subsequence(最长公共子序列LCS)
POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...
-
51Nod 1006:最长公共子序列Lcs(打印LCS)
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
随机推荐
-
IOS开发-文件管理(二)
IOS开发-文件管理(二) 五.Plist文件 String方式添加 NSString *path = [NSHomeDirectory( ) stringByAppen ...
-
Test Bench基础知识笔记
学的内容多了,好多指令和用法都容易遗忘和混淆,出现这种情况就需要勤记笔记,忘记了多翻阅几次,基本上就能完全记住了. [`timescale 1ns/1ps]前一个1ns表示时延时间,后一个1ps表示时 ...
-
HttpMime 处理 多部件 POST 请求
HttpMime 处理 多部件 POST 请求 在有的场合例如我们要用到上传文件的时候,就不能使用基本的GET请求和POST 请求了,我们要使用多部件的POST请求.由于Android 附带的 Htt ...
-
HTML5 新点总结-持续
H5新的表单元素:datalist datalist的表现形式和原先的select标签相似,但是datalist想要发挥作用需要input标签的帮助:这样就可以在input标签中显示类似select下 ...
-
linux磁盘管理系列一:磁盘配额管理
磁盘管理系列 linux磁盘管理系列一:磁盘配额管理 http://www.cnblogs.com/zhaojiedi1992/p/zhaojiedi_linux_040_quota.html l ...
-
将preg_replace()改写为preg_replace_callback()
preg_replace()函数使用/e修饰符可能带来安全隐患,PHP5.5之后,该用法被抛弃使用,升级为preg_replace_callback().在新版本下运行老版本的代码,会出现错误,如: ...
-
.net 相关性能计数器丢失问题解决方案
1.开始运行:cmd 2.在cmd窗口中执行下面命令: cd c:\windows\system32 lodctr /R 执行完上面命令,会提示:“信息: 成功地从系统备份存储中重建性能计数器设置” ...
-
Bamboo基础概念
1.project 1)提供报告.展板.连接 |——2.plan 1)指定默认代码仓库(同一个仓库) 2)构建触发条件的配置 3)构建结果的发送与通知 ...
-
CF28D Don&#39;t fear, DravDe is kind
传送门 题意:\(n\)个位置,每个位置有价值\(v_i\)和重量\(p_i\),要选出一些位置,如果要选位置\(i\),那么前面选的重量之和要为\(l_i\),后面选的重量之和要为\(r_i\),求 ...
-
一次 Java 内存泄漏排查过程,涨姿势
人人都会犯错,但一些错误是如此的荒谬,我想不通怎么会有人犯这种错误.更没想到的是,这种事竟发生在了我们身上.当然,这种东西只有事后才能发现真相.接下来,我将讲述一系列最近在我们一个应用上犯过的这种错误 ...