实验环境:tensorflow版本1.2.0,python2.7
介绍
惯例先展示函数:
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)
除去name参数用以指定该操作的name,与方法有关的一共五个参数:
input:
指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的Tensor,要求类型为float32和float64其中之一
filter:
相当于CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels, out_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数],要求类型与参数input相同,有一个地方需要注意,第三维in_channels,就是参数input的第四维
strides:卷积时在图像每一维的步长,这是一个一维的向量,长度4
padding:
string类型的量,只能是”SAME”,”VALID”其中之一,这个值决定了不同的卷积方式(后面会介绍)
use_cudnn_on_gpu:
bool类型,是否使用cudnn加速,默认为true
结果返回一个Tensor,这个输出,就是我们常说的feature map
实验
那么TensorFlow的卷积具体是怎样实现的呢,用一些例子去解释它:
1.考虑一种最简单的情况,现在有一张3×3单通道的图像(对应的shape:[1,3,3,1]),用一个1×1的卷积核(对应的shape:[1,1,1,1])去做卷积,最后会得到一张3×3的feature map
2.增加图片的通道数,使用一张3×3五通道的图像(对应的shape:[1,3,3,5]),用一个1×1的卷积核(对应的shape:[1,1,1,1])去做卷积,仍然是一张3×3的feature map,这就相当于每一个像素点,卷积核都与该像素点的每一个通道做点积
1
2
3
4
|
input = tf.Variable(tf.random_normal([ 1 , 3 , 3 , 5 ]))
filter = tf.Variable(tf.random_normal([ 1 , 1 , 5 , 1 ]))
op = tf.nn.conv2d( input , filter , strides = [ 1 , 1 , 1 , 1 ], padding = 'VALID' )
|
3.把卷积核扩大,现在用3×3的卷积核做卷积,最后的输出是一个值,相当于情况2的feature map所有像素点的值求和
1
2
3
4
|
input = tf.Variable(tf.random_normal([ 1 , 3 , 3 , 5 ]))
filter = tf.Variable(tf.random_normal([ 3 , 3 , 5 , 1 ]))
op = tf.nn.conv2d( input , filter , strides = [ 1 , 1 , 1 , 1 ], padding = 'VALID' )
|
4.使用更大的图片将情况2的图片扩大到5×5,仍然是3×3的卷积核,令步长为1,输出3×3的feature map
1
2
3
4
5
|
.....
.xxx.
.xxx.
.xxx.
.....
|
5.上面我们一直令参数padding的值为‘VALID',当其为‘SAME'时,表示卷积核可以停留在图像边缘,如下,输出5×5的feature map
1
2
3
4
|
input = tf.Variable(tf.random_normal([ 1 , 5 , 5 , 5 ]))
filter = tf.Variable(tf.random_normal([ 3 , 3 , 5 , 1 ]))
op = tf.nn.conv2d( input , filter , strides = [ 1 , 1 , 1 , 1 ], padding = 'SAME' )
|
1
2
3
4
5
|
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
|
6.如果卷积核有多个
1
2
3
4
|
input = tf.Variable(tf.random_normal([ 1 , 5 , 5 , 5 ]))
filter = tf.Variable(tf.random_normal([ 3 , 3 , 5 , 7 ]))
op = tf.nn.conv2d( input , filter , strides = [ 1 , 1 , 1 , 1 ], padding = 'SAME' )
|
此时输出7张5×5的feature map
7.步长不为1的情况,文档里说了对于图片,因为只有两维,通常strides取[1,stride,stride,1]
1
2
3
4
|
input = tf.Variable(tf.random_normal([ 1 , 5 , 5 , 5 ]))
filter = tf.Variable(tf.random_normal([ 3 , 3 , 5 , 7 ]))
op = tf.nn.conv2d( input , filter , strides = [ 1 , 2 , 2 , 1 ], padding = 'SAME' )
|
此时,输出7张3×3的feature map
1
2
3
4
5
|
x.x.x
.....
x.x.x
.....
x.x.x
|
8.如果batch值不为1,同时输入10张图
1
2
3
4
|
input = tf.Variable(tf.random_normal([ 10 , 5 , 5 , 5 ]))
filter = tf.Variable(tf.random_normal([ 3 , 3 , 5 , 7 ]))
op = tf.nn.conv2d( input , filter , strides = [ 1 , 2 , 2 , 1 ], padding = 'SAME' )
|
每张图,都有7张3×3的feature map,输出的shape就是[10,3,3,7]
代码清单
最后,把程序总结一下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
import tensorflow as tf
#case 2
input = tf.Variable(tf.random_normal([ 1 , 3 , 3 , 5 ]))
filter = tf.Variable(tf.random_normal([ 1 , 1 , 5 , 1 ]))
op2 = tf.nn.conv2d( input , filter , strides = [ 1 , 1 , 1 , 1 ], padding = 'VALID' )
#case 3
input = tf.Variable(tf.random_normal([ 1 , 3 , 3 , 5 ]))
filter = tf.Variable(tf.random_normal([ 3 , 3 , 5 , 1 ]))
op3 = tf.nn.conv2d( input , filter , strides = [ 1 , 1 , 1 , 1 ], padding = 'VALID' )
#case 4
input = tf.Variable(tf.random_normal([ 1 , 5 , 5 , 5 ]))
filter = tf.Variable(tf.random_normal([ 3 , 3 , 5 , 1 ]))
op4 = tf.nn.conv2d( input , filter , strides = [ 1 , 1 , 1 , 1 ], padding = 'VALID' )
#case 5
input = tf.Variable(tf.random_normal([ 1 , 5 , 5 , 5 ]))
filter = tf.Variable(tf.random_normal([ 3 , 3 , 5 , 1 ]))
op5 = tf.nn.conv2d( input , filter , strides = [ 1 , 1 , 1 , 1 ], padding = 'SAME' )
#case 6
input = tf.Variable(tf.random_normal([ 1 , 5 , 5 , 5 ]))
filter = tf.Variable(tf.random_normal([ 3 , 3 , 5 , 7 ]))
op6 = tf.nn.conv2d( input , filter , strides = [ 1 , 1 , 1 , 1 ], padding = 'SAME' )
#case 7
input = tf.Variable(tf.random_normal([ 1 , 5 , 5 , 5 ]))
filter = tf.Variable(tf.random_normal([ 3 , 3 , 5 , 7 ]))
op7 = tf.nn.conv2d( input , filter , strides = [ 1 , 2 , 2 , 1 ], padding = 'SAME' )
#case 8
input = tf.Variable(tf.random_normal([ 10 , 5 , 5 , 5 ]))
filter = tf.Variable(tf.random_normal([ 3 , 3 , 5 , 7 ]))
op8 = tf.nn.conv2d( input , filter , strides = [ 1 , 2 , 2 , 1 ], padding = 'SAME' )
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
print ( "case 2" )
print (sess.run(op2))
print ( "case 3" )
print (sess.run(op3))
print ( "case 4" )
print (sess.run(op4))
print ( "case 5" )
print (sess.run(op5))
print ( "case 6" )
print (sess.run(op6))
print ( "case 7" )
print (sess.run(op7))
print ( "case 8" )
print (sess.run(op8))
|
因为是随机初始化,我的结果是这样的:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
|
case 2
[[[[ - 0.64064658 ]
[ - 1.82183945 ]
[ - 2.63191342 ]]
[[ 8.05008984 ]
[ 1.66023612 ]
[ 2.53465152 ]]
[[ - 3.51703644 ]
[ - 5.92647743 ]
[ 0.55595356 ]]]]
case 3
[[[[ 10.53139973 ]]]]
case 4
[[[[ 10.45460224 ]
[ 6.23760509 ]
[ 4.97157574 ]]
[[ 3.05653667 ]
[ - 11.43907833 ]
[ - 2.05077457 ]]
[[ - 7.48340607 ]
[ - 0.90697062 ]
[ 3.27171206 ]]]]
case 5
[[[[ 5.30279875 ]
[ - 2.75329947 ]
[ 5.62432575 ]
[ - 10.24609661 ]
[ 0.12603235 ]]
[[ 0.2113893 ]
[ 1.73748684 ]
[ - 3.04372549 ]
[ - 7.2625494 ]
[ - 12.76445198 ]]
[[ - 1.57414591 ]
[ - 3.39802694 ]
[ - 6.01582575 ]
[ - 1.73042905 ]
[ - 3.07183361 ]]
[[ 1.41795194 ]
[ - 2.02815866 ]
[ - 17.08983231 ]
[ 11.98958111 ]
[ 2.44879103 ]]
[[ 0.29902667 ]
[ - 3.19712877 ]
[ - 2.84978414 ]
[ - 2.71143317 ]
[ 5.99366283 ]]]]
case 6
[[[[ 12.02504349 4.35077286 2.67207813 5.77893162 6.98221684
- 0.96858567 - 8.1147871 ]
[ - 0.02988982 - 2.52141953 15.24755192 6.39476395 - 4.36355495
- 2.34515095 5.55743504 ]
[ - 2.74448752 - 1.62703776 - 6.84849405 10.12248802 3.7408421
4.71439075 6.13722801 ]
[ 0.82365227 - 1.00546622 - 3.29460764 5.12690163 - 0.75699937
- 2.60097408 - 8.33882809 ]
[ 0.76171923 - 0.86230004 - 6.30558443 - 5.58426857 2.70478535
8.98232937 - 2.45504045 ]]
[[ 3.13419819 - 13.96483231 0.42031103 2.97559547 6.86646557
- 3.44916964 - 0.10199898 ]
[ 11.65359879 - 5.2145977 4.28352737 2.68335319 3.21993709
- 6.77338028 8.08918095 ]
[ 0.91533852 - 0.31835344 - 1.06122255 - 9.11237717 5.05267143
5.6913228 - 5.23855162 ]
[ - 0.58775592 - 5.03531456 14.70254898 9.78966522 - 11.00562763
- 4.08925819 - 3.29650426 ]
[ - 2.23447251 - 0.18028721 - 4.80610704 11.2093544 - 6.72472
- 2.67547607 1.68422937 ]]
[[ - 3.40548897 - 9.70355129 - 1.05640507 - 2.55293012 - 2.78455877
- 15.05377483 - 4.16571808 ]
[ 13.66925812 2.87588191 8.29056358 6.71941566 2.56558466
10.10329056 2.88392687 ]
[ - 6.30473804 - 3.3073864 12.43273926 - 0.66088223 2.94875336
0.06056046 - 2.78857946 ]
[ - 7.14735603 - 1.44281793 3.3629775 - 7.87305021 2.00383091
- 2.50426936 - 6.93097973 ]
[ - 3.15817571 1.85821593 0.60049552 - 0.43315536 - 4.43284273
0.54264796 1.54882073 ]]
[[ 2.19440389 - 0.21308756 - 4.35629082 - 3.62100363 - 0.08513772
- 0.80940366 7.57606506 ]
[ - 2.65713739 0.45524287 - 16.04298019 - 5.19629049 - 0.63200498
1.13256514 - 6.70045137 ]
[ 8.00792599 4.09538221 - 6.16250181 8.35843849 - 4.25959206
- 1.5945878 - 7.60996151 ]
[ 8.56787586 5.85663748 - 4.38656425 0.12728286 - 6.53928804
2.3200655 9.47253895 ]
[ - 6.62967777 2.88872099 - 2.76913023 - 0.86287498 - 1.4262073
- 6.59967232 5.97229099 ]]
[[ - 3.59423327 4.60458899 - 5.08300591 1.32078576 3.27156973
0.5302844 - 5.27635145 ]
[ - 0.87793881 1.79624665 1.66793108 - 4.70763969 - 2.87593603
- 1.26820421 - 7.72825718 ]
[ - 1.49699068 - 3.40959787 - 1.21225107 - 1.11641395 - 8.50123024
- 0.59399474 3.18010235 ]
[ - 4.4249506 - 0.73349547 - 1.49064219 - 6.09967899 5.18624878
- 3.80284953 - 0.55285597 ]
[ - 1.42934585 2.76053572 - 5.19795799 0.83952439 - 0.15203482
0.28564462 2.66513705 ]]]]
case 7
[[[[ 2.66223097 2.64498258 - 2.93302107 3.50935125 4.62247562
2.04241085 - 2.65325522 ]
[ - 0.03272867 - 1.00103927 - 4.3691597 2.16724801 7.75251007
- 4.6788125 - 0.89318085 ]
[ 4.74175072 - 0.80443329 - 1.02710629 - 6.68772554 4.57605314
- 3.72993755 4.79951382 ]]
[[ 5.249547 8.92288399 7.10703182 - 9.10498428 - 7.43814278
- 8.69616318 1.78862095 ]
[ 7.53669024 - 14.52316284 - 2.55870199 - 1.11976743 3.81035042
2.45559502 - 2.35436153 ]
[ 3.93275881 5.11939669 - 4.7114296 - 11.96386623 2.11866689
0.57433248 - 7.19815397 ]]
[[ 0.25111672 1.40801668 1.28818977 - 2.64093828 0.98182392
3.69512987 4.78833389 ]
[ 0.30391204 - 10.26406097 6.05877018 - 6.04775047 8.95922089
0.80235004 - 5.4520669 ]
[ - 7.24697018 - 2.33498096 - 10.20039558 - 1.24307609 3.99351597
- 8.1029129 2.44411373 ]]]]
case 8
[[[[ - 6.84037447e + 00 1.33321762e - 01 - 5.09891272e + 00 5.55682087e + 00
8.22002888e + 00 - 4.94586229e - 02 4.19012117e + 00 ]
[ 6.79884481e + 00 1.21652853e + 00 - 5.69557810e + 00 - 1.33555794e + 00
3.24849486e - 01 4.88868570e + 00 - 3.90220714e + 00 ]
[ - 3.53190374e + 00 - 4.11765718e + 00 4.54340839e + 00 1.85549557e + 00
- 3.38682461e + 00 2.62719369e + 00 - 4.98658371e + 00 ]]
[[ - 9.86354351e + 00 - 6.76713943e + 00 3.62617874e + 00 - 6.16720629e + 00
1.96754158e + 00 - 4.54203081e + 00 - 1.37485743e + 00 ]
[ - 1.76783955e + 00 2.35163045e + 00 - 2.21175838e + 00 3.83091879e + 00
3.16964531e + 00 - 7.58307219e + 00 4.71943617e + 00 ]
[ 1.20776439e + 00 4.86006308e + 00 1.04233503e + 01 - 7.82327271e + 00
5.39195156e + 00 - 6.31672382e + 00 1.35577369e + 00 ]]
[[ - 3.65947580e + 00 - 1.98961139e + 00 7.53771305e + 00 2.79224634e - 01
- 2.90050888e + 00 - 3.57466817e + 00 - 6.33232594e - 01 ]
[ 5.89931488e - 01 2.83219159e - 01 - 1.65850735e + 00 - 6.45545387e + 00
- 1.17044592e + 00 1.40343285e + 00 5.74970901e - 01 ]
[ - 8.58810043e + 00 - 1.25172977e + 01 6.84177876e - 01 3.80004168e + 00
- 1.54420209e + 00 - 3.32161427e + 00 - 1.05423713e + 00 ]]]
[[[ - 4.82677078e + 00 3.11167526e + 00 - 4.32694483e + 00 - 4.77198696e + 00
2.32186103e + 00 1.65402293e - 01 - 5.32707453e + 00 ]
[ 3.91779566e + 00 6.27949667e + 00 2.32975650e + 00 - 1.06336937e + 01
4.44044876e + 00 8.08288479e + 00 - 5.83346319e + 00 ]
[ - 2.82141399e + 00 - 9.16103745e + 00 6.98908520e + 00 - 5.66505909e + 00
- 2.11039782e + 00 2.27499461e + 00 - 5.74120235e + 00 ]]
[[ 6.71680808e - 01 - 4.01104212e + 00 - 4.61760712e + 00 1.02667952e + 01
- 8.21200657e + 00 - 8.57054043e + 00 1.71461976e + 00 ]
[ 2.40794683e + 00 - 2.63071585e + 00 9.68963623e + 00 - 4.51778412e + 00
- 3.91073084e + 00 - 5.91874409e + 00 9.96273613e + 00 ]
[ 2.67705870e + 00 2.85607010e - 01 2.45853162e + 00 4.44810390e + 00
- 2.11300468e + 00 - 5.77583075e + 00 2.83322239e + 00 ]]
[[ - 8.21949577e + 00 - 7.57754421e + 00 3.93484974e + 00 2.26189137e + 00
- 3.49395227e + 00 - 6.40283823e + 00 - 6.00450039e - 01 ]
[ 2.95964479e - 02 - 1.19976890e + 00 5.38537979e + 00 4.62369967e + 00
3.89780998e + 00 - 6.36872959e + 00 7.12107182e + 00 ]
[ - 8.85006547e - 01 1.92706418e + 00 3.26668215e + 00 2.03566647e + 00
1.44209075e + 00 - 6.48463774e + 00 - 8.33671093e - 02 ]]]
[[[ - 2.64583921e + 00 3.86011934e + 00 4.18198538e + 00 3.50338411e + 00
6.35944796e + 00 - 4.28423309e + 00 4.87355423e + 00 ]
[ 4.42271233e + 00 3.92883778e + 00 - 5.59371090e + 00 4.98251200e + 00
- 3.45068884e + 00 2.91921115e + 00 1.03779554e + 00 ]
[ 1.36162388e + 00 - 1.06808968e + 01 - 3.92534947e + 00 1.85111761e - 01
- 4.87255526e + 00 1.66666222e + 01 - 1.04918976e + 01 ]]
[[ - 4.34632540e + 00 1.74614882e + 00 - 2.89012527e + 00 - 8.74067783e + 00
5.06610107e + 00 1.24989772e + 00 - 3.06433105e + 00 ]
[ 2.49973416e + 00 2.14041996e + 00 - 4.71008825e + 00 7.39326143e + 00
3.94770741e + 00 8.23049164e + 00 - 1.67046225e + 00 ]
[ - 2.94665837e + 00 - 4.58543825e + 00 7.21219683e + 00 1.09780006e + 01
5.17258358e + 00 7.90257788e + 00 - 2.13929534e + 00 ]]
[[ 4.20402241e + 00 - 2.98926830e + 00 - 3.89006615e - 01 - 8.16001511e + 00
- 2.38355541e + 00 1.42584383e + 00 - 5.46632290e + 00 ]
[ 5.52395058e + 00 5.09255171e + 00 - 1.08742390e + 01 - 4.96262169e + 00
- 1.35298109e + 00 3.65663052e - 01 - 3.40589857e + 00 ]
[ - 6.95647061e - 01 - 4.12855625e + 00 2.66609401e - 01 - 9.39565372e + 00
- 3.85058141e + 00 2.51248240e - 01 - 5.77149725e + 00 ]]]
[[[ 1.22103825e + 01 5.72040796e + 00 - 3.56989503e + 00 - 1.02248180e + 00
- 5.20942688e - 01 7.15008640e + 00 3.43482435e - 01 ]
[ 6.01409674e + 00 - 1.59511256e + 00 - 6.48080063e + 00 - 1.82889538e + 01
- 1.03537569e + 01 - 1.48270035e + 01 - 5.26662111e + 00 ]
[ 5.51758146e + 00 - 2.91831636e + 00 3.75461340e - 01 - 9.23893452e - 02
- 9.22101116e + 00 7.16952372e + 00 - 6.86479330e - 01 ]]
[[ - 3.03645611e + 00 6.68620300e + 00 - 3.31973934e + 00 - 4.91346550e + 00
9.20719814e + 00 - 2.55552864e + 00 - 2.16087699e - 02 ]
[ - 3.02986956e + 00 - 1.29726543e + 01 1.53023469e + 00 - 8.19733238e + 00
5.68085670e + 00 - 1.72856820e + 00 - 4.69369221e + 00 ]
[ - 6.67176056e + 00 8.76355553e + 00 2.18996063e - 01 - 4.38777208e + 00
- 6.35764122e - 01 - 1.37812555e + 00 - 4.41474581e + 00 ]]
[[ 2.25345469e + 00 1.02142305e + 01 - 1.71714854e + 00 - 5.29060185e - 01
2.27982092e + 00 - 8.75302982e + 00 7.13998675e - 02 ]
[ - 6.67547846e + 00 3.67722750e + 00 - 3.44172812e + 00 5.69674826e + 00
- 2.28723526e + 00 5.92991543e + 00 5.53608060e - 01 ]
[ - 1.01174891e - 01 - 2.73731589e + 00 - 4.06187654e - 01 6.54158068e + 00
2.59603882e + 00 2.99202776e + 00 - 2.22350287e + 00 ]]]
[[[ - 1.81271315e + 00 2.47674489e + 00 - 2.90284491e + 00 1.34291325e + 01
7.69864845e + 00 - 1.27134466e + 00 3.02233839e + 00 ]
[ - 2.08135307e - 01 1.03206539e + 00 1.90775347e + 00 9.01517391e + 00
- 3.52140331e + 00 9.05393791e + 00 - 9.12732124e - 01 ]
[ 1.12128162e + 00 5.98179293e + 00 - 2.27206993e + 00 - 5.21281779e - 01
6.20835352e + 00 3.73474598e + 00 1.18961644e + 00 ]]
[[ 3.17242837e + 00 - 6.00571585e + 00 2.37661076e + 00 - 5.64483738e + 00
- 6.45412731e + 00 8.75251675e + 00 7.33790398e - 02 ]
[ 3.08957529e + 00 - 1.06855690e - 01 - 5.16810894e - 01 - 9.41085911e + 00
8.23878098e + 00 6.79738426e + 00 - 1.23478663e + 00 ]
[ - 9.20640087e + 00 - 6.82801771e + 00 - 5.96975613e + 00 7.61030674e - 01
- 4.35995817e + 00 - 3.54818010e + 00 - 2.56281614e + 00 ]]
[[ 4.69872713e - 01 8.36402321e + 00 5.37103415e - 01 - 1.68033957e - 01
- 3.21731424e + 00 - 7.34270859e + 00 - 3.14253521e + 00 ]
[ 6.69656086e + 00 - 5.27954197e + 00 - 8.57314682e + 00 4.84328842e + 00
- 2.96387672e + 00 2.47114658e + 00 2.85376692e + 00 ]
[ - 7.86032295e + 00 - 7.18845367e + 00 - 3.27161223e - 01 9.27330971e + 00
- 6.14093494e + 00 - 4.49041557e + 00 3.47160912e + 00 ]]]
[[[ - 1.89188433e + 00 5.43082857e + 00 6.04252160e - 01 6.92894220e + 00
8.59178162e + 00 1.02003086e + 00 5.31300211e + 00 ]
[ - 8.97491455e - 01 6.52438164e + 00 - 4.43710327e + 00 7.10509634e + 00
8.84234428e + 00 3.08552694e + 00 2.78152227e + 00 ]
[ - 9.40537453e - 02 2.34666920e + 00 - 5.57496691e + 00 - 8.62346458e + 00
- 1.32807600e + 00 - 8.12027454e - 02 - 9.00946975e - 01 ]]
[[ - 3.53673506e + 00 8.93675327e + 00 3.27456236e - 01 - 3.41519475e + 00
7.69804525e + 00 - 5.18698692e + 00 - 3.96991730e + 00 ]
[ 1.99988627e + 00 - 9.16149998e + 00 - 7.49944544e + 00 5.02162695e - 01
3.57059622e + 00 9.17566013e + 00 - 1.77589107e + 00 ]
[ - 1.18147678e + 01 - 7.68992901e + 00 1.88449645e + 00 2.77643538e + 00
- 1.11342735e + 01 - 3.12916255e + 00 - 3.34161663e + 00 ]]
[[ - 3.62668943e + 00 - 3.10993242e + 00 3.60834384e + 00 4.69678783e + 00
- 1.73794723e + 00 - 1.27035933e + 01 3.65882218e - 01 ]
[ - 8.97550106e + 00 - 4.33533072e - 01 4.41743970e - 01 - 5.83433771e + 00
- 4.85818958e + 00 9.56629372e + 00 3.56375504e + 00 ]
[ - 6.87092066e + 00 1.96412420e + 00 5.14182663e + 00 - 8.97769547e + 00
3.61136627e + 00 5.91387987e - 01 - 2.95224571e + 00 ]]]
[[[ - 1.11802626e + 00 3.24175072e + 00 5.94067669e + 00 9.29727936e + 00
9.28199863e + 00 - 4.80889034e + 00 6.96202660e + 00 ]
[ 7.23959684e + 00 3.11182523e + 00 1.84116721e + 00 5.12095928e - 01
- 7.65049171e + 00 - 4.05325556e + 00 5.38544941e + 00 ]
[ 4.66621685e + 00 - 1.61665392e + 00 9.76448345e + 00 2.38519001e + 00
- 2.06760812e + 00 - 6.03633642e - 01 3.66192675e + 00 ]]
[[ 1.52149725e + 00 - 1.84441996e + 00 4.87877655e + 00 2.96750760e + 00
2.37311172e + 00 - 2.98487616e + 00 9.98114228e - 01 ]
[ 9.20035839e + 00 5.24396753e + 00 - 2.57312679e + 00 - 7.26040459e + 00
- 1.17509928e + 01 6.85688591e + 00 3.37383580e + 00 ]
[ 6.17629957e + 00 - 5.15294194e - 01 - 1.64212489e + 00 - 5.70274448e + 00
- 2.36294913e + 00 2.60432816e + 00 2.63957453e + 00 ]]
[[ 7.91168213e - 03 - 1.15018034e + 00 3.05471039e + 00 3.31086922e + 00
5.35744762e + 00 1.14832592e + 00 9.56500292e - 01 ]
[ 4.86464739e + 00 5.37348413e + 00 1.42920148e + 00 1.62809372e + 00
2.61656570e + 00 7.88479471e + 00 - 6.09324336e - 01 ]
[ 7.71319962e + 00 - 1.73930550e + 00 - 2.99925613e + 00 - 3.14857435e + 00
3.19194889e + 00 1.70928288e + 00 4.90955710e - 01 ]]]
[[[ - 1.79046512e + 00 8.54369068e + 00 1.85044312e + 00 - 9.88471413e + 00
9.52995300e - 01 - 1.34820042e + 01 - 1.13713551e + 01 ]
[ 8.37582207e + 00 6.64692163e + 00 - 3.22429276e + 00 3.37997460e + 00
3.91468263e + 00 6.96061993e + 00 - 1.18029404e + 00 ]
[ - 2.13278866e + 00 4.36152029e + 00 - 4.14593410e + 00 - 2.15160155e + 00
1.90767622e + 00 1.16321917e + 01 - 3.72644544e + 00 ]]
[[ - 5.03508925e - 01 - 6.33426476e + 00 - 1.06393566e + 01 - 6.49301624e + 00
- 6.31036520e + 00 3.13485146e + 00 - 5.77433109e - 01 ]
[ 7.41444230e - 01 - 4.87326956e + 00 - 5.98253345e + 00 - 9.14121056e + 00
- 8.64077091e - 01 2.06696177e + 00 - 7.59688473e + 00 ]
[ 1.38767815e + 00 1.84418947e - 01 5.72539902e + 00 - 2.07557893e + 00
9.70911503e - 01 1.16765432e + 01 - 1.40111232e + 00 ]]
[[ - 1.21869087e + 00 2.44499159e + 00 - 1.65706706e + 00 - 6.19807529e + 00
- 5.56950712e + 00 - 1.72372568e + 00 3.62687564e + 00 ]
[ 2.23708963e + 00 - 2.87862611e + 00 2.71666467e - 01 4.35115099e + 00
- 8.85548592e - 01 2.91860628e + 00 8.10848951e - 01 ]
[ - 5.33635712e + 00 7.15072036e - 01 5.21240902e + 00 - 3.11152220e + 00
2.01623154e + 00 - 2.28398323e - 01 - 3.23233747e + 00 ]]]
[[[ 3.77991509e + 00 5.53513861e + 00 - 1.82022047e + 00 4.22430277e + 00
5.60331726e + 00 - 4.28308249e + 00 4.54524136e + 00 ]
[ - 5.30983162e + 00 - 3.45605731e + 00 2.69374561e + 00 - 6.16836596e + 00
- 9.18601036e + 00 - 1.58697796e + 00 - 5.73809910e + 00 ]
[ 2.18868661e + 00 6.96338892e - 01 1.88057957e + 01 - 4.21353197e + 00
1.20818818e + 00 2.85108542e + 00 6.62180042e + 00 ]]
[[ 1.01285219e + 01 - 4.86819077e + 00 - 2.45067930e + 00 7.50106812e - 01
4.37201977e + 00 4.78472042e + 00 1.19103444e + 00 ]
[ - 3.26395583e + 00 - 5.59358537e - 01 1.52001972e + 01 - 5.93994498e - 01
- 1.49040818e + 00 - 7.02547312e + 00 - 1.29268813e + 00 ]
[ 1.02763653e + 01 1.31108007e + 01 - 2.91605043e + 00 - 1.37688947e + 00
3.33029580e + 00 1.96966705e + 01 2.55259371e + 00 ]]
[[ 4.58397627e + 00 - 3.19160700e + 00 - 6.51985502e + 00 1.02908373e + 01
- 4.17618275e + 00 - 9.69347239e - 01 7.46259832e + 00 ]
[ 6.09876537e + 00 1.33044279e + 00 5.04027081e + 00 - 6.87740147e - 01
4.14770365e + 00 - 2.26751328e - 01 1.54876924e + 00 ]
[ 2.70127630e + 00 - 1.59834003e + 00 - 1.82587504e + 00 - 5.92888784e + 00
- 5.65038967e + 00 - 6.46078014e + 00 - 1.80765367e + 00 ]]]
[[[ - 1.57899165e + 00 3.39969063e + 00 1.02308102e + 01 - 7.77082300e + 00
- 8.02129686e - 01 - 3.67387819e + 00 - 1.37204361e + 00 ]
[ 3.93093729e + 00 6.17498016e + 00 - 1.41695750e + 00 - 1.26903206e - 01
2.18985319e + 00 5.83657503e - 01 7.39725351e - 01 ]
[ 5.53898287e + 00 2.22283316e + 00 - 1.10478985e + 00 2.68644023e + 00
- 2.59913635e + 00 3.74231935e + 00 4.85016155e + 00 ]]
[[ 4.05368614e + 00 - 3.74058294e + 00 7.32348633e + 00 - 1.17656231e + 00
3.71810269e + 00 - 1.63957381e + 00 9.91670132e - 01 ]
[ - 1.29317007e + 01 1.12296543e + 01 - 1.13844347e + 01 - 7.13933802e + 00
- 8.65884399e + 00 - 5.56065178e + 00 - 1.46718264e + 00 ]
[ - 8.08718109e + 00 - 1.98826480e + 00 - 4.07488203e + 00 2.06440473e + 00
1.13524094e + 01 5.68703651e + 00 - 2.18706942e + 00 ]]
[[ 1.51166654e + 00 - 6.84034204e + 00 9.33474350e + 00 - 4.80931902e + 00
- 6.24172688e - 02 - 4.21381521e + 00 - 5.73313046e + 00 ]
[ - 1.35943902e + 00 5.27799511e + 00 - 3.77813816e + 00 6.88291168e + 00
4.35068893e + 00 - 1.02540245e + 01 8.86861205e - 01 ]
[ - 4.49999619e + 00 - 2.97630525e + 00 - 6.18604183e - 01 - 2.49702692e + 00
- 6.76169348e + 00 - 2.55930996e + 00 - 2.71291423e + 00 ]]]]
|
以上这篇TensorFlow tf.nn.conv2d实现卷积的方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/mao_xiao_feng/article/details/78004522