这一版,对虹软的功能进行了一些封装,添加了人脸特征比对,比对结果保存到文件,和从文件提取特征进行比对,大体功能基本都已经实现,可以进行下一步的应用开发了
face_class.py
from ctypes import *
#人脸框
class MRECT(Structure):
_fields_=[(u'left1',c_int32),(u'top1',c_int32),(u'right1',c_int32),(u'bottom1',c_int32)]
#版本信息 版本号,构建日期,版权说明
class ASF_VERSION(Structure):
_fields_=[('Version',c_char_p),('BuildDate',c_char_p),('CopyRight',c_char_p)]
#单人人脸信息 人脸狂,人脸角度
class ASF_SingleFaceInfo(Structure):
_fields_=[('faceRect',MRECT),('faceOrient',c_int32)]
#多人人脸信息 人脸框数组,人脸角度数组,人脸数
class ASF_MultiFaceInfo(Structure):
# _fields_=[('faceRect',POINTER(MRECT)),('faceOrient',POINTER( c_int32)),('faceNum',c_int32)]
_fields_=[(u'faceRect',POINTER(MRECT)),(u'faceOrient',POINTER(c_int32)),(u'faceNum', c_int32)]
# _fields_=[(u'faceRect',MRECT*50),(u'faceOrient',c_int32*50),(u'faceNum',c_int32)]
#人脸特征 人脸特征,人脸特征长度
class ASF_FaceFeature(Structure):
_fields_=[('feature',c_void_p),('featureSize',c_int32)]
#自定义图片类
class IM:
def __init__(self):
self.filepath=None
self.date=None
self.width=0
self.height=0
face_dll.py
from ctypes import *
from face_class import *
wuyongdll=CDLL('d:\python\Test\Face\lib\X64\libarcsoft_face.dll')
dll=CDLL('d:\python\Test\Face\lib\X64\libarcsoft_face_engine.dll')
dllc=cdll.msvcrt
ASF_DETECT_MODE_VIDEO = 0x00000000
ASF_DETECT_MODE_IMAGE = 0xFFFFFFFF
c_ubyte_p = POINTER(c_ubyte)
#激活
jihuo=dll.ASFActivation
jihuo.restype = c_int32
jihuo.argtypes = (c_char_p,c_char_p)
#初始化
chushihua=dll.ASFInitEngine
chushihua.restype=c_int32
chushihua.argtypes=(c_long,c_int32,c_int32,c_int32,c_int32,POINTER(c_void_p))
#人脸识别
shibie=dll.ASFDetectFaces
shibie.restype=c_int32
shibie.argtypes=(c_void_p,c_int32,c_int32,c_int32,POINTER(c_ubyte),POINTER(ASF_MultiFaceInfo))
#特征提取
tezheng=dll.ASFFaceFeatureExtract
tezheng.restype=c_int32
tezheng.argtypes=(c_void_p,c_int32,c_int32,c_int32,POINTER(c_ubyte),POINTER(ASF_SingleFaceInfo),POINTER(ASF_FaceFeature)) #特征比对
bidui=dll.ASFFaceFeatureCompare
bidui.restype=c_int32
bidui.argtypes=(c_void_p,POINTER(ASF_FaceFeature),POINTER(ASF_FaceFeature),POINTER(c_float))
malloc = dllc.malloc
free = dllc.free
memcpy = dllc.memcpy malloc.restype = c_void_p
malloc.argtypes = (c_size_t, )
free.restype = None
free.argtypes = (c_void_p, )
memcpy.restype = c_void_p
memcpy.argtypes = (c_void_p, c_void_p, c_size_t)
face_function.py
import face_dll,face_class
from ctypes import *
import cv2
from io import BytesIO
# from Main import *
Handle=c_void_p()
c_ubyte_p = POINTER(c_ubyte)
# 激活函数
def JH(appkey,sdkey):
ret=face_dll.jihuo(appkey,sdkey)
return ret
# 初始化函数
def CSH():# 1:视频或图片模式,2角度,3最小人脸尺寸推荐16,4最多人脸数最大50,5功能,6返回激活句柄
ret=face_dll.chushihua(0xFFFFFFFF,0x1,16,50,5,byref(Handle))
# Main.Handle=Handle
return ret,Handle
# cv2记载图片并处理
def LoadImg(im):
img=cv2.imread(im.filepath)
sp=img.shape
img=cv2.resize(img,(sp[1]//4*4,sp[0]//4*4))
sp=img.shape
im.data=img
im.width=sp[1]
im.height=sp[0]
return im
def RLSB(im):
faces=face_class.ASF_MultiFaceInfo()
img=im.data
imgby=bytes(im.data)
imgcuby=cast(imgby,c_ubyte_p)
ret=face_dll.shibie(Handle,im.width,im.height,0x201,imgcuby,byref(faces))
return ret,faces
# 显示人脸识别图片
def showimg(im,faces):
for i in range(0,faces.faceNum):
ra=faces.faceRect[i]
cv2.rectangle(im.data,(ra.left1,ra.top1),(ra.right1,ra.bottom1),(255,0,0,),2)
cv2.imshow('faces',im.data)
cv2.waitKey(0)
#提取人脸特征
def RLTZ(im,ft):
detectedFaces=face_class.ASF_FaceFeature()
img=im.data
imgby=bytes(im.data)
imgcuby=cast(imgby,c_ubyte_p)
ret=face_dll.tezheng(Handle,im.width,im.height,0x201,imgcuby,ft,byref(detectedFaces))
if ret==0:
retz=face_class.ASF_FaceFeature()
retz.featureSize=detectedFaces.featureSize
#必须操作内存来保留特征值,因为c++会在过程结束后自动释放内存
retz.feature=face_dll.malloc(detectedFaces.featureSize)
face_dll.memcpy(retz.feature,detectedFaces.feature,detectedFaces.featureSize)
# print('提取特征成功:',detectedFaces.featureSize,mem)
return ret,retz
else:
return ret
#特征值比对,返回比对结果
def BD(tz1,tz2):
jg=c_float()
ret=face_dll.bidui(Handle,tz1,tz2,byref(jg))
return ret,jg.value
#单人特征写入文件
def writeFTFile(feature,filepath):
f = BytesIO(string_at(feature.feature,feature.featureSize))
a=open(filepath,'wb')
a.write(f.getvalue())
a.close()
#从多人中提取单人数据
def getsingleface(singleface,index):
ft=face_class.ASF_SingleFaceInfo()
ra=singleface.faceRect[index]
ft.faceRect.left1=ra.left1
ft.faceRect.right1=ra.right1
ft.faceRect.top1=ra.top1
ft.faceRect.bottom1=ra.bottom1
ft.faceOrient=singleface.faceOrient[index]
return ft
#从文件获取特征值
def ftfromfile(filepath):
fas=face_class.ASF_FaceFeature()
f=open('d:/1.dat','rb')
b=f.read()
f.close()
fas.featureSize=b.__len__()
fas.feature=face_dll.malloc(fas.featureSize)
face_dll.memcpy(fas.feature,b,fas.featureSize)
return fas
Main1.py
import face_dll,face_class
from ctypes import *
import cv2
import face_function as fun
Appkey=b''
SDKey=b''
# 激活
ret=fun.JH(Appkey,SDKey)
if ret==0 or ret==90114:
print('激活成功:',ret)
else:
print('激活失败:',ret)
pass
# 初始化
ret=fun.CSH()
if ret[0]==0:
print('初始化成功:',ret,'句柄',fun.Handle)
else:
print('初始化失败:',ret)
# 加载图片
im=face_class.IM()
im.filepath='e:/2.jpg'
im=fun.LoadImg(im)
print(im.filepath,im.width,im.height)
# cv2.imshow('im',im.data)
# cv2.waitKey(0)
print('加载图片完成:',im) ret=fun.RLSB(im)
if ret[0]==-1:
print('人脸识别失败:',ret)
pass
else:
print('人脸识别成功:',ret)
# 显示人脸照片
# showimg(im,ret)
#提取单人1特征
ft=fun.getsingleface(ret[1],0)
tz1=fun.RLTZ(im,ft)[1]
#提取单人2特征
ft=fun.getsingleface(ret[1],1)
tz2=fun.RLTZ(im,ft)[1]
#特征保存到文件
# fun.writeFTFile(tz1,'d:/1.dat')
# fun.writeFTFile(tz2,'d:/2.dat')
#文件获取特征
tz=fun.ftfromfile('d:/1.dat')
jg=fun.BD(tz1,tz)
print(jg[1])
#结果比对
# jg=fun.BD(tz1,tz2)
# print(jg[1])
python调用虹软2.0第三版的更多相关文章
-
python调用虹软2.0(全网首发)-更新中
python调用虹软2.0目前没有任何demo可以参考,自己研究了2个晚上终于把第一步做出来了,使用了opencv来加载和显示图片,龟速更新中 这一版作废,新版已发出:https://www.cnbl ...
-
python调用虹软2.0第二版
第一版踩了无数的坑,终于第二版把坑全添了,这次更新可以正常获取人脸数,角度,代码可读性更高,继续更新中 第三版已发出 https://www.cnblogs.com/wxt51/p/10125460. ...
-
python调用虹软2.0
第一版踩了无数的坑,终于第二版把坑全添了,这次更新可以正常获取人脸数,角度,代码可读性更高,继续更新中 第三版已发出 https://www.cnblogs.com/wxt51/p/10125460. ...
-
Python调用ansible API系列(三)带有callback的执行adhoc和playbook
在第二篇文章中虽然可以执行adhoc和playbook但是执行结果的输出并不是特别直观,虽然没有报错但是到底什么结果其实你是不知道的尤其是在执行adhoc的时候,这时候我们要利用callback来设置 ...
-
python全栈开放实践第三版第一章的练习题完成情况
练习题: 1.简述编译型与解释型语言的区别,且分别列出你知道哪些语言属于编译型,哪些数以解释型.1 编译型:只须编译一次就可以把源代码编译成机器语言,后面的执行无须重新编译,直接使用之前的编译结果就可 ...
-
Python调用C/C++程序
编程中会遇到调用其他语言到库,这里记录一下Python调用C++. Python底层是C, 所以调用C还是比较方便.调用C++有些麻烦. Python提供了ctypes, 方便将Python类型转为C ...
-
Python黑帽编程3.0 第三章 网络接口层攻击基础知识
3.0 第三章 网络接口层攻击基础知识 首先还是要提醒各位同学,在学习本章之前,请认真的学习TCP/IP体系结构的相关知识,本系列教程在这方面只会浅尝辄止. 本节简单概述下OSI七层模型和TCP/IP ...
-
selenium webdriver (python) 第三版
感谢 感谢购买第二版的同学,谢谢你们对本人劳动成果的支持!也正是你们时常问我还出不出第三版了,也是你们的鼓励,让我继续学习整理本文档. 感谢乙醇前辈,第二版的文档是放在他的淘宝网站上卖的,感谢他的帮忙 ...
-
笨办法学 Python (第三版)(转载)
笨办法学 Python (第三版) 原文地址:http://blog.sina.com.cn/s/blog_72b8298001019xg8.html 摘自https://learn-python ...
随机推荐
-
【python】密码生成器
#!/usr/bin/env python#-*- coding:UTF-8 -*- import random #导入random模块import string #导入string模块 sal ...
-
1.C#中通过委托Action消除重复代码
阅读目录 一:重复的代码 二:使用委托消除重复代码 一:重复的代码 我们在写一些方法的时候,会在里面可能出现异常的地方使用try catch语句,这样每个方法都会有try catch语 ...
-
那些年我们赚过的外快(POS(移动支付)接口开发)
老规矩上前戏了.在我写博文"那些年我们赚过的外快"前后算起来大大小小也接了些私活,这次是因为好久没写博客了,趁热分享一下.最近回了离老家近的二线城市成都工作,收入那是下降很多啊,刚 ...
-
开发Chrome Extension截取你微博的帐号密码
Google允许开发者对Chrome浏览器做扩展,所以有了之前火爆的12306抢票软件,我 也用它抢过票,一直很好奇它怎么注入js到12306上面的.这周有空研究了下Chrome Extension, ...
-
实际利率 >; 名义利率
名义利率与实际利率的关系为:实际利率=(1+名义利率/计息周期)计息周期-1. 如计息周期数=1时,两者相等.如计息周期数大于1时,实际利率大于名义利率,当计息周期数小于1时,实际利率小于名义利率. ...
-
解决js获取数据跨域问题,jsonP
网上说了一些jsonp的示例,感觉都没用,最后研究了一下,调用腾讯的一个api.最后要加output=jsonp&callback=?这个,比较适用. var url = "http ...
-
codevs 1725 探险 (二分)
/* 二分答案 这个题目要求“体力和最小的那个小组的所有人的体力和尽量大” 很明显我们二分最小体力 如果合法 逐渐放大 但是这里我们二分的是最小而不是最大 所以累加的体力>=ans时 跳过当前体 ...
-
Lock锁与Condition监视器(生产者与消费者)。
/*生产者与消费者第二次敲,本人表示很郁闷,以后要经常读这个 * Condition 将Object类中的监视器(wait notify notifyAll)分解成不同的对象.例如condition_ ...
- 以太坊Inner Transaction合约内充值转账
-
内存管理buddy[原理]
TODO------------------------------------------------------------------------------------------------ ...