图像的正交变换在数字图像的处理与分析中起着很重要的作用,被广泛应用于图像增强、去噪、压缩编码等众多领域。本文手工实现了二维离散傅里叶变换和二维离散余弦变换算法,并在多个图像样本上进行测试,以探究二者的变换效果。
1. 傅里叶变换
实验原理
对一幅图像进行离散傅里叶变换(DFT),可以得到图像信号的傅里叶频谱。二维 DFT 的变换及逆变换公式如下:
DFT 尽管解决了频域离散化的问题,但运算量太大。从公式中可以看到,有两个嵌套的求和符号,显然直接计算的复杂度为 \(O(n^2)\) 。为了加快傅里叶变换的运算速度,后人提出快速傅里叶变换(FFT),即蝶形算法,将计算 DFT 的复杂度降低到了 \(O(n\log n)\)。
FFT 利用傅里叶变换的数学性质,采用分治的思想,将一个 \(N\) 点的 FFT,变成两个 \(N/2\) 点的 FFT。以一维 FFT 为例,可以表示如下:
其中,\(G(k)\) 是 \(x(k)\) 的偶数点的 \(N/2\) 点的 FFT,\(H(k)\) 是 \(x(k)\) 的奇数点的 \(N/2\) 点的 FFT。
这样,通过将原问题不断分解为两个一半规模的子问题,然后计算相应的蝶形运算单元,最终得以完成整个 FFT。
算法步骤
本次实验中,一维 FFT 采用递归实现,且仅支持长度为 2 的整数幂的情况。
算法步骤如下:
- 检查图像的尺寸,如果不是 2 的整数幂则直接退出。
- 对图像的灰度值进行归一化。
- 对图像的每一行执行一维 FFT,并保存为中间结果。
- 对上一步结果中的每一列执行一维 FFT,返回变换结果。
- 将零频分量移到频谱中心,并求绝对值进行可视化。
- 对中心化后的结果进行对数变换,以改善视觉效果。
主要代码
一维 FFT
def fft(x):
n = len(x)
if n == 2:
return [x[0] + x[1], x[0] - x[1]]
G = fft(x[::2])
H = fft(x[1::2])
W = np.exp(-2j * np.pi * np.arange(n//2) / n)
WH = W * H
X = np.concatenate([G + WH, G - WH])
return X
二维 FFT
def fft2(img):
h, w = img.shape
if ((h-1) & h) or ((w-1) & w):
print('Image size not a power of 2')
return img
img = normalize(img)
res = np.zeros([h, w], 'complex128')
for i in range(h):
res[i, :] = fft(img[i, :])
for j in range(w):
res[:, j] = fft(res[:, j])
return res
零频分量中心化
def fftshift(img):
# swap the first and third quadrants, and the second and fourth quadrants
h, w = img.shape
h_mid, w_mid = h//2, w//2
res = np.zeros([h, w], 'complex128')
res[:h_mid, :w_mid] = img[h_mid:, w_mid:]
res[:h_mid, w_mid:] = img[h_mid:, :w_mid]
res[h_mid:, :w_mid] = img[:h_mid, w_mid:]
res[h_mid:, w_mid:] = img[:h_mid, :w_mid]
return res
运行结果
2. 余弦变换
实验原理
当一个函数为偶函数时,其傅立叶变换的虚部为零,因而不需要计算,只计算余弦项变换,这就是余弦变换。离散余弦变换(DCT)的变换核为实数的余弦函数,因而计算速度比变换核为指数的 DFT 要快得多。
一维离散余弦变换与离散傅里叶变换具有相似性,对离散傅里叶变换进行下式的修改:
式中
由上式可见,\(\sum\limits_{x=0}^{2M-1}f_e(x)e^{\frac{-j2ux\pi}{2M}}\) 是 \(2M\) 个点的傅里叶变换,因此在做离散余弦变换时,可将其拓展为 \(2M\) 个点,然后对其做离散傅里叶变换,取傅里叶变换的实部就是所要的离散余弦变换。
算法步骤
基于上述原理,二维 DCT 的实现重用了上文中的一维 FFT 函数,并根据公式做了一些修改。
算法步骤如下:
- 检查图像的尺寸,如果不是 2 的整数幂则直接退出。
- 对图像的灰度值进行归一化。
- 对图像的每一行进行延拓,执行一维 FFT 后取实部,乘以公式中的系数,并保存为中间结果。
- 对上一步结果中的每一列进行延拓,执行一维 FFT 后取实部,乘以公式中的系数,返回变换结果。
- 对结果求绝对值,并进行对数变换,以改善视觉效果。
主要代码
二维 DCT
def dct2(img):
h, w = img.shape
if ((h-1) & h) or ((w-1) & w):
print('Image size not a power of 2')
return img
img = normalize(img)
res = np.zeros([h, w], 'complex128')
for i in range(h):
res[i, :] = fft(np.concatenate([img[i, :], np.zeros(w)]))[:w]
res[i, :] = np.real(res[i, :]) * np.sqrt(2 / w)
res[i, 0] /= np.sqrt(2)
for j in range(w):
res[:, j] = fft(np.concatenate([res[:, j], np.zeros(h)]))[:h]
res[:, j] = np.real(res[:, j]) * np.sqrt(2 / h)
res[0, j] /= np.sqrt(2)
return res
运行结果
完整源码请见 GitHub 仓库
Python 实现图像快速傅里叶变换和离散余弦变换的更多相关文章
-
JPEG解码——(6)IDCT逆离散余弦变换
本篇是该系列的第六篇,承接上篇IZigZag变换,介绍接下来的一个步骤--逆离散余弦变换,即逆零偏置前的一个步骤. 该步骤比较偏理论,其业务是对IZigZag变换后的数据,再进一步的处理,使其恢复DC ...
-
在python3下使用OpenCV做离散余弦变换DCT及其反变换IDCT
对图像处理经常用到DCT, Python下有很多带有DCT算法包, 这里使用OpenCV的DCT做变换, 并简单置0部分数据, 再查看反变换图像的效果. import numpy as np impo ...
-
在python3下对数据分块(8x8大小)使用OpenCV的离散余弦变换DCT
在MATLAB中有blkproc (blockproc)对数据处理, 在python下没找到对应的Function, 这里利用numpy 的split(hsplit和vsplit) 对数据分块处理成8 ...
-
「快速傅里叶变换(FFT)」学习笔记
FFT即快速傅里叶变换,离散傅里叶变换及其逆变换的快速算法.在OI中用来优化多项式乘法. 本文主要目的是便于自己整理.复习 FFT的算法思路 已知两个多项式的系数表达式,要求其卷积的系数表达式. 先将 ...
-
傅里叶变换通俗解释及快速傅里叶变换的python实现
通俗理解傅里叶变换,先看这篇文章傅里叶变换的通俗理解! 接下来便是使用python进行傅里叶FFT-频谱分析: 一.一些关键概念的引入 1.离散傅里叶变换(DFT) 离散傅里叶变换(discrete ...
-
基于python的快速傅里叶变换FFT(二)
基于python的快速傅里叶变换FFT(二)本文在上一篇博客的基础上进一步探究正弦函数及其FFT变换. 知识点 FFT变换,其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法. ...
-
python 图像的离散傅立叶变换
图像(MxN)的二维离散傅立叶变换可以将图像由空间域变换到频域中去,空间域中用x,y来表示空间坐标,频域由u,v来表示频率,二维离散傅立叶变换的公式如下: 在python中,numpy库的fft模块有 ...
-
图像傅里叶变换(快速傅里叶变换FFT)
学习DIP第7天,图像傅里叶变换 转载请标明出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对 ...
-
Discrete cosine transform(离散余弦转换)
A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of co ...
随机推荐
- LM2596扩流
-
explode 结合 str_replace对获取的URL处理手记
今天更新我的一个FKQQ的程序.我的一个PHP文件接收到HQ的QQ号码的字符串.因为获取的内容有大量的垃圾内容所以我用str_replace做了一个处理代码如下: $xx1 = preg_replac ...
-
检索n以内所有素数
#include <iostream>#include <cmath> const int N=500000;//数组大小 using namespace std; int m ...
-
DP:树DP
The more, The Better Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
-
Maven-11: 从命令行调用插件
mvn -h显示mvn命令帮助: usage: mvn [options] [<goal(s)>] [<phase(s)>] Options: -am,--also-make ...
-
js重点--原型链
通过将一个构造函数的原型对象指向父类的实例,就可以调用父类中的实例属性及父类的原型对象属性,实现继承. function animals(){ this.type = "animals&qu ...
-
Mybatis从认识到了解
目录 MyBatis的介绍 介绍: 为什么选择MyBatis: 与Hibernate的对比: MyBatis的优点: 入门示例 Mybatis核心组件 四大核心组件 SqlSessionFactory ...
-
Windows下文件夹扩展名
回收站.{645ff040-5081-101b-9f08-00aa002f954e} 拨号网络.{992CFFA0-F557-101A-88EC-00DD010CCC48} 打印机.{2227a280 ...
-
实例讲解Silverlight 初始控件如何获得焦点
这个问题本来是在我实际的项目中遇到过的,但这其实是当初项目要求,要求一进入就要使得在用户名那个文字框中聚焦,而不是再用鼠标去点击获得焦点,后来自己费了点时间解决了.本来我没太注意就过去了,没想到在QQ ...
-
Java系列: 如何在Eclipse中安装Memory Analyzer插件
一.找到eclipse的插件安装对话框: help->install new software ->work with 二.输入Memory Analyzer的安装路径 具体可以到http ...