
题意:给你一个n,m,n表示有n分钟,每i分钟对应的是第i分钟能跑的距离,m代表最大疲劳度,每跑一分钟疲劳度+1,当疲劳度==m,必须休息,在任意时刻都可以选择休息,如果选择休息,那么必须休息到疲劳度为0,当然,当疲劳度为0的时候也是可以继续选择休息的,求在n分钟后疲劳度为0所跑的最大距离
思路:dp[i][j]表示在第i分钟疲劳度为j的时候所跑的最大距离,dp[i][j]=dp[i-1][j-1]+d[i];这个转移,说的是,第i分钟选择跑步,当然,第i分钟可以选择不跑步,那么就是选择休息,题目说了,选择休息的话必须要休息到疲劳度为0才可以跑,那还有一点,当疲劳度为0了,还是选择继续休息呢?dp[i][0]=dp[i-1][0];
选择休息,那么疲劳度到0了,这一点的最大距离怎么做呢?dp[i][0]=max(dp[i][0],dp[i-k][k]) (0<k<=m&&i-k>0)
#include<iostream>
#include<cstdio>
#include<cstring>
#include <cmath>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<algorithm>
using namespace std; int dp[][];
int ans[]; int main()
{
int n,m;
while(cin>>n>>m)
{
for(int i=;i<=n;i++)
scanf("%d",&ans[i]);
memset(dp,,sizeof(dp)); for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
dp[i][j]=dp[i-][j-]+ans[i];
dp[i][]=dp[i-][];
for(int k=;k<=m;k++)
if(i-k>=)
dp[i][]=max(dp[i][],dp[i-k][k]);
}
cout<<dp[n][]<<endl;
}
return ;
}