题意:一只蜗牛,它的房子在树上的某个叶子节点上,它要从树的根节点出发,寻找自己的房子。树的任意两个节点的距离为1,房子出现在每个叶子节点上的可能性一样。有的节点上有虫子,如果有虫子,虫子会告诉蜗牛它的房子是不是在这个节点为根的子树上。求蜗牛所走距离的最小期望。
如下图,如果蜗牛制定的策略先到2,再到5再到4,则由于房子地点的不确定,所以可能走的距离为1,4,6,所以期望为11/3。如果制定的策略是先到3,根据虫子的话判断去4和5还是去2,则可能走的距离为2,4,3,所以期望为9/3 = 3。可以证明,最小的期望即为3。
解法:首先,设叶子节点总数为tt,则肯定会有tt种情况,所以只需要求出所有情况下,找到房子所需要走的距离之和即可。
设le[x]表示以x为根的子树上叶子节点的个数;
设su[x]表示在以x为根的子树上,各种情况下找到房子所需走的距离之和;(0为根节点,su[0] / le[0]即为所求)
设fail[x]表示在以x为根的子树上,遍历整个子树没有找到房子又返回x节点所需要走的距离和。
则le[x] += le[v[i]],v是x的子节点集合;
for (int i = 0; i < v.size(); ++ i) { su[x] += (fail[x] + 1) * le[y] + su[y];fail[x] += fail[y] + 2;}(这个状态转移方程很精妙,多体会下,最好画个树手算模拟一下)
tag:树形dp, think, good
/*
* Author: Plumrain
* Created Time: 2013-11-20 10:39
* File Name: (good)DP-POJ-2057.cpp
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector> using namespace std; #define CLR(x) memset(x, 0, sizeof(x))
#define PB push_back int n;
bool w[];
vector<int> v[];
int le[], fail[], su[]; bool cmp(int x, int y)
{
return (fail[x]+)*le[y] < (fail[y]+)*le[x];
} void init()
{
CLR (le); CLR (fail); CLR (su); CLR (w);
for (int i = ; i < n; ++ i)
v[i].clear(); int t1;
char s[];
for (int i = ; i < n; ++ i){
scanf ("%d%s", &t1, s);
if (s[] == 'Y') w[i] = ;
if (t1 != -) v[t1-].PB(i);
}
} void dfs(int x)
{
if (!v[x].size()){
le[x] = ;
su[x] = ;
fail[x] = ;
return;
} for (int i = ; i < (int)v[x].size(); ++ i){
dfs(v[x][i]);
le[x] += le[v[x][i]];
} sort (v[x].begin(), v[x].end(), cmp);
for (int i = ; i < (int)v[x].size(); ++ i){
int y = v[x][i];
su[x] += (fail[x]+)*le[y] + su[y];
fail[x] += fail[y] + ;
}
if (w[x]) fail[x] = ;
} int main()
{
while (scanf("%d", &n) != EOF && n){
init();
dfs();
printf ("%.4f\n", (double)su[] / le[]);
}
return ;
}