python实现二层神经网络
包括输入层和输出层
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
import numpy as np
#sigmoid function
def nonlin(x, deriv = False ):
if (deriv = = True ):
return x * ( 1 - x)
return 1 / ( 1 + np.exp( - x))
#input dataset
x = np.array([[ 0 , 0 , 1 ],
[ 0 , 1 , 1 ],
[ 1 , 0 , 1 ],
[ 1 , 1 , 1 ]])
#output dataset
y = np.array([[ 0 , 0 , 1 , 1 ]]).T
np.random.seed( 1 )
#init weight value
syn0 = 2 * np.random.random(( 3 , 1 )) - 1
for iter in xrange ( 100000 ):
l0 = x #the first layer,and the input layer
l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the output layer
l1_error = y - l1
l1_delta = l1_error * nonlin(l1, True )
syn0 + = np.dot(l0.T, l1_delta)
print "outout after Training:"
print l1
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
import numpy as np
#sigmoid function
def nonlin(x, deriv = False ):
if (deriv = = True ):
return x * ( 1 - x)
return 1 / ( 1 + np.exp( - x))
#input dataset
x = np.array([[ 0 , 0 , 1 ],
[ 0 , 1 , 1 ],
[ 1 , 0 , 1 ],
[ 1 , 1 , 1 ]])
#output dataset
y = np.array([[ 0 , 0 , 1 , 1 ]]).T
np.random.seed( 1 )
#init weight value
syn0 = 2 * np.random.random(( 3 , 1 )) - 1
for iter in xrange ( 100000 ):
l0 = x #the first layer,and the input layer
l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the output layer
l1_error = y - l1
l1_delta = l1_error * nonlin(l1, True )
syn0 + = np.dot(l0.T, l1_delta)
print "outout after Training:"
print l1
|
这里,
l0:输入层
l1:输出层
syn0:初始权值
l1_error:误差
l1_delta:误差校正系数
func nonlin:sigmoid函数
可见迭代次数越多,预测结果越接近理想值,当时耗时也越长。
python实现三层神经网络
包括输入层、隐含层和输出层
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
import numpy as np
def nonlin(x, deriv = False ):
if (deriv = = True ):
return x * ( 1 - x)
else :
return 1 / ( 1 + np.exp( - x))
#input dataset
X = np.array([[ 0 , 0 , 1 ],
[ 0 , 1 , 1 ],
[ 1 , 0 , 1 ],
[ 1 , 1 , 1 ]])
#output dataset
y = np.array([[ 0 , 1 , 1 , 0 ]]).T
syn0 = 2 * np.random.random(( 3 , 4 )) - 1 #the first-hidden layer weight value
syn1 = 2 * np.random.random(( 4 , 1 )) - 1 #the hidden-output layer weight value
for j in range ( 60000 ):
l0 = X #the first layer,and the input layer
l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer
l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer
l2_error = y - l2 #the hidden-output layer error
if (j % 10000 ) = = 0 :
print "Error:" + str (np.mean(l2_error))
l2_delta = l2_error * nonlin(l2,deriv = True )
l1_error = l2_delta.dot(syn1.T) #the first-hidden layer error
l1_delta = l1_error * nonlin(l1,deriv = True )
syn1 + = l1.T.dot(l2_delta)
syn0 + = l0.T.dot(l1_delta)
print "outout after Training:"
print l2
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
import numpy as np
def nonlin(x, deriv = False ):
if (deriv = = True ):
return x * ( 1 - x)
else :
return 1 / ( 1 + np.exp( - x))
#input dataset
X = np.array([[ 0 , 0 , 1 ],
[ 0 , 1 , 1 ],
[ 1 , 0 , 1 ],
[ 1 , 1 , 1 ]])
#output dataset
y = np.array([[ 0 , 1 , 1 , 0 ]]).T
syn0 = 2 * np.random.random(( 3 , 4 )) - 1 #the first-hidden layer weight value
syn1 = 2 * np.random.random(( 4 , 1 )) - 1 #the hidden-output layer weight value
for j in range ( 60000 ):
l0 = X #the first layer,and the input layer
l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer
l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer
l2_error = y - l2 #the hidden-output layer error
if (j % 10000 ) = = 0 :
print "Error:" + str (np.mean(l2_error))
l2_delta = l2_error * nonlin(l2,deriv = True )
l1_error = l2_delta.dot(syn1.T) #the first-hidden layer error
l1_delta = l1_error * nonlin(l1,deriv = True )
syn1 + = l1.T.dot(l2_delta)
syn0 + = l0.T.dot(l1_delta)
print "outout after Training:"
print l2
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://blog.csdn.net/stoneyyhit/article/details/52335468