poj 1945 Power Hungry Cows A*

时间:2023-03-09 18:28:04
poj 1945 Power Hungry Cows  A*

Description:

    就是给你一个数,你可以把它自乘,也可以把他乘或除以任意一个造出过的数,问你最多经过多少次操作能变换成目标数

思路:这题真的不怎么会啊。n = 20000,每一层都有很多个扩展状态,裸宽搜会被T,启发式函数又设计不出来……

看了一个Vjudge上的代码才知道这题怎么写。

就是每一个状态是由最多两个数转化而来的,所以可以把两个数看做一个状态。

用一个多元组$node(x,y,g,h)$表示状态,$x, y$分别表示两个数中的较大数和较小数,然后$g$表示转换成当前的状态需要多少步,$h$表示大数$x$转换到大于等于目标状态至少还要多少步。

启发式函数就是当前步数+预期至少需要的步数,即$g+h$

再用一个哈希表把二元组$(x,y)$与转换到这个状态需要几步对应起来,这样可以完成去重。当然也可以用$map$实现,但按照poj的尿性,很可能TLE。。

然后加几个剪枝,排除以下多余状态:

1.如果$x > 2*n$,这个都能理解吧。

2.如果$x=y$,因为该状态和一个$x$的状态对未来的贡献是等价的,反正自乘自除也能达到一样的效果,不管$y$取什么数,都比$x$与$y$相等时更优。

3.如果$x > n$ 并且 $y = 0$,因为这样的话该状态永远达不到$x=n$。

4.如果$n $ $mod$ $gcd(x,y) != 0$,因为这样的状态不管怎么乘怎么除,也永远达不到$x=n$。

5.如果$(x,y)$已经在哈希表里了且对应的$g$更小,这个也都能理解吧。

这样的话就应该能过了。

然后款搜的时候要注意下,枚举出一个二元组能变换出来的所有可能的二元组,这个具体可以看代码。

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
const int N = , SIZE = 1e6 + ;
int n;
struct node{
int x, y, g, h;
bool operator < (const node &a)const{
return g + h == a.g + a.h ? h > a.h : g + h > a.g + a.h;
}
};
struct Node{
int to, next, w;
};
struct hash_map{
int head[N], now;
Node a[SIZE];
bool insert(int sta, int w){
int x = sta % N;
for(int i = head[x]; i; i = a[i].next){
if(a[i].to == sta){
if(a[i].w <= w) return ;
a[i].w = w; return ;
}
}
a[++now] = {sta, head[x], w};
head[x] = now;
return ;
}
}dict;
priority_queue<node> heap;
node now;
int gcd(int a, int b){ return b ? gcd(b, a % b) : a;}
void che(int x, int y){
if(x < y) swap(x, y);
if(x > * n) return ;
if(x > n && y == ) return ;
if(x == y) return ;
if(n % gcd(x, y)) return;
if(!dict.insert(x * + y, now.g + )) return;
int h = , tx = x;
while(tx < n) h++, tx <<= ;
heap.push({x, y, now.g + , h});
}
void A_star(){
heap.push({, , , });
while(!heap.empty()){
now = heap.top(); heap.pop();
if(now.x == n || now.y == n){
printf("%d\n", now.g); break;
}
int a[] = {now.x, now.y};
for(int i = ; i < ; i++)
for(int j = i; j < ; j++)
for(int k = ; k < ; k++){
int b[] = {a[], a[]};
b[k] = a[i] + a[j];
che(b[], b[]);
}
che(now.x - now.y, now.y);
che(now.x, now.x - now.y);
}
}
int main(){
scanf("%d", &n);
A_star();
return ;
}