Maximum Subarray LT53

时间:2021-07-28 18:51:49

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

Idea 1: For all pairs of integers i and j satisfying 0 <= i  <= j < nums.length, check whether the sum of nums[i..j] is greater than the maximum sum so far, take advange of:

  sum of nums[i..j] = sum of nums[i..j-1] + nums[j]

the sum of all continuous subarray starting at i can be calculated in O(n), hence we have a quadratic algorithm.

Time complexity: O(n2)

Space complexity: O(1)

class Solution {
public int maxSubArray(int[] nums) {
int sz = nums.length;
int maxSumSoFar = Integer.MIN_VALUE; for(int i = 0; i < sz; ++i) {
int sumStartHere = 0;
for(int j = i; j < sz; ++j) {
sumStartHere += nums[j];
maxSumSoFar = Math.max(maxSumSoFar, sumStartHere);
}
}
return maxSumSoFar;
}
}

Idea 1.a:  With the help of a cumulative sum array, cumarr[0...i], which can be computed in linear time,  it allows the sum to be computed quickly,

sum[i..j] = cumarr[j] - cumarr[i-1].

Time complexity: O(n2)

Space complexity: O(n)

class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length < 1) return 0;
int sz = nums.length;
int[] cumuSum = new int[sz]; cumuSum[0] = nums[0];
for(int i = 1; i < sz; ++i) {
cumuSum[i] = cumuSum[i-1] + nums[i];
} int maxSumSoFar = Integer.MIN_VALUE;
for(int i = 0; i < sz; ++i) {
for(int j = i; j < sz; ++j) {
int previousSum = 0;
if(i > 0) {
previousSum = cumuSum[i-1];
}
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j] - previousSum);
}
} return maxSumSoFar;
}
}
class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length < 1) return 0;
int sz = nums.length;
int[] cumuSum = new int[sz]; cumuSum[0] = nums[0];
for(int i = 1; i < sz; ++i) {
cumuSum[i] = cumuSum[i-1] + nums[i];
} int maxSumSoFar = Integer.MIN_VALUE;
for(int j = 0; j < sz; ++j) {
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j]);
for(int i = 1; i <= j; ++i) {
maxSumSoFar = Math.max(maxSumSoFar, cumuSum[j] - cumuSum[i-1]);
}
} return maxSumSoFar;
}
}

Idea 2: divide and conquer. Divide into two subproblems, recusively find the maximum in subvectors(max[i..k], max[k..j]) and find the maximum of crossing subvectors(max[i..k..j]), return the max of max[i..k], max[k..j] and max[i..k..j].

Time complexity: O(nlgn)

Space complexity: O(lgn) the stack

class Solution {
private int maxSubArrayHelper(int[] nums, int l, int u) {
if(l >= u) return Integer.MIN_VALUE;
int mid = l + (u - l)/2; int leftMaxSum = nums[mid];
int sum = 0;
for(int left = mid; left >=l; --left) {
sum += nums[left];
leftMaxSum = Math.max(leftMaxSum, sum);
} int rightMaxSum = 0;
sum = 0;
for(int right = mid+1; right < u; ++right) {
sum += nums[right];
rightMaxSum = Math.max(rightMaxSum, sum);
} return Math.max(leftMaxSum + rightMaxSum,
Math.max(maxSubArrayHelper(nums, l, mid), maxSubArrayHelper(nums, mid+1, u)));
} public int maxSubArray(int[] nums) {
return maxSubArrayHelper(nums, 0, nums.length);
}
}

Idea 3: Extend the solution to the next element in the array. How can we extend a solution for nums[0...i-1] to nums[0..i].

The key is the max sum ended in each element, if extending to the next element,

maxHere(i) = Math.max( maxHere(i-1) + nums[i], nums[i])

maxSoFar = Math.max(maxSoFar, maxHere)

Time compleixty: O(n)

Space complexity: O(1)

class Solution {
public int maxSubArray(int[] nums) {
int maxHere = 0;
int maxSoFar = Integer.MIN_VALUE; for(int num: nums) {
maxHere = Math.max(maxHere, 0) + num;
maxSoFar = Math.max(maxSoFar, maxHere);
} return maxSoFar;
}
}

Idea 3.a: Use the cumulative sum,

maxHere = cumuSum(i) - minCumuSum

cumuSum(i) = cumuSum(i-1) + nums[i]

maxSoFar = Math.max(maxSoFar, maxHere) = Math.max(maxSoFar, cumuSum - minCumuSum)

Time compleixty: O(n)

Space complexity: O(1)

class Solution {
public int maxSubArray(int[] nums) {
int min = 0;
int cumuSum = 0;
int maxSoFar = Integer.MIN_VALUE; for(int num: nums) {
cumuSum += num;
maxSoFar = Math.max(maxSoFar, cumuSum - min);
min = Math.min(min, cumuSum);
} return maxSoFar;
}
}

Maximum Subarray LT53的更多相关文章

  1. &lbrack;LintCode&rsqb; Maximum Subarray 最大子数组

    Given an array of integers, find a contiguous subarray which has the largest sum. Notice The subarra ...

  2. 【leetcode】Maximum Subarray &lpar;53&rpar;

    1.   Maximum Subarray (#53) Find the contiguous subarray within an array (containing at least one nu ...

  3. 算法:寻找maximum subarray

    <算法导论>一书中演示分治算法的第二个例子,第一个例子是递归排序,较为简单.寻找maximum subarray稍微复杂点. 题目是这样的:给定序列x = [1, -4, 4, 4, 5, ...

  4. LEETCODE —— Maximum Subarray &lbrack;一维DP&rsqb;

    Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...

  5. 【leetcode】Maximum Subarray

    Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...

  6. maximum subarray problem

    In computer science, the maximum subarray problem is the task of finding the contiguous subarray wit ...

  7. &lpar;转&rpar;Maximum subarray problem--Kadane’s Algorithm

    转自:http://kartikkukreja.wordpress.com/2013/06/17/kadanes-algorithm/ 本来打算自己写的,后来看到上述链接的博客已经说得很清楚了,就不重 ...

  8. 3月7日 Maximum Subarray

    间隔2天,继续开始写LeetCodeOj. 原题: Maximum Subarray 其实这题很早就看了,也知道怎么做,在<编程珠玑>中有提到,求最大连续子序列,其实只需要O(n)的复杂度 ...

  9. LeetCode&colon; Maximum Product Subarray &amp&semi;&amp&semi; Maximum Subarray &amp&semi;子序列相关

    Maximum Product Subarray Title: Find the contiguous subarray within an array (containing at least on ...

随机推荐

  1. ServerSocket

    在网上找ServerSocket看到的解释

  2. Mybaits使用

    一.多数据源问题 主要思路是把dataSource.sqlSesstionFactory.MapperScannerConfigurer在配置中区分开,各Mapper对应的包名.类名区分开 1 &lt ...

  3. Bluetooth L2CAP介绍

    目录 1. 通用操作 1. L2CAP Channel 2. 设备间操作 3. 层间操作 4. 操作模式 2. 数据包格式(Data Packet Format) 1. B-Frame 2. G-Fr ...

  4. spring 知识梳理

    https://github.com/spring-projects/spring-framework  spring github地址

  5. Cocos2d-x 游戏存档

    游戏存档功能能够保存游戏中数据.让玩家游戏能够延续. 单机游戏更为重要.而CCUserDefault能够作轻量级数据库使用,用来存储数据,支持数据类型bool,int, float, double, ...

  6. Effective C&plus;&plus;&lpar;13&rpar; 用对象管理资源

    问题聚焦: 从这条准则开始,都是关于资源管理的. 资源,一旦用了它,将来必须还给系统. 本条准则,基于对象的资源管理办法,建立在C++的构造函数,析构函数和拷贝函数(拷贝构造函数和重载赋值操作符)的基 ...

  7. python判断素数的方法

    #运用python的数学函数 import math def isPrime(n): if n <= 1: return False for i in range(2, int(math.sqr ...

  8. 进阶开发——文档,缓存,ip限速

    一.文档自动化管理 1.django rest framework提供了一个接口: 可以将代码中注释转换为文档中内容(list,create等),以及help_text等等,且会生成JavaScrip ...

  9. 因为NLS&lowbar;LANG 造成 Oracle数据库丢失 中文字符集兼容问题的处理&period;

    接着上一封blog. 因为sqlplus的 乱码问题 我修改了 注册表里面 NLS_LANG 的 value值.主要改动为: NLS_LANG source: SIMPLIFIED CHINESE_C ...

  10. 在VritualBox中安装CentOS7

    系统:Windows10 位 详细步骤参考: Windows平台上通过VirtualBox安装centos虚拟机 安装virtual box 出现2503错误解决:c:/windows/temp 添加 ...