Just for study from its editorial~
Lesson learnt: an optimized Hungarian Algorithm: Hopcroft-Karp Algorithm (a batched version of Hungarian)
A very good article on it (in Chinese): https://www.renfei.org/blog/bipartite-matching.html
The basic idea of Hungarian is: find all augment pathes and flip (matched\unmatched toggled) them, recursively.
And Hopcroft-Karp is a batched version of Hungarian: we simply check all edges at each node.
#include <cmath>
#include <cstdio>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#include <unordered_set>
using namespace std; #define MAX 2001 typedef long long LL; int N, M, K;
vector<int> edges[MAX]; // edges of left side
vector<bool> visited(MAX);
vector<int> Left(MAX), Right(MAX);
vector<vector<LL>> dist(MAX, vector<LL>(MAX)); /*
* Hopcroft-Karp Algorithm: optimized(batched) Hungarian Algorithm
* Complexity: E*sqrt(V)
*/ // True: augment path flipped
// False:augment path stay the same
//
bool dfs(int u)
{
if(visited[u]) return false; visited[u] = true; // Flip input u-v pairs
for(auto v : edges[u])
{
if(Right[v] == -) // u-v not matched
{
// then match u-v
Right[v] = u, Left[u] = v;
return true;
}
} // Given all input u-v are matched then match deeper pathes
for(auto v : edges[u])
{
if(dfs(Right[v])) // flipped deeper?
{
// then flip current edge too
Right[v] = u, Left[u] = v;
return true;
}
}
return false;
} int match()
{
// Cleanup work
Left.assign(MAX, -);
Right.assign(MAX, -); int i, ret = ;
bool done = true;
do
{
done = true; // for the new aug. path
visited.assign(MAX, ); for(int i = ; i <= N; i ++)
if(Left[i] == - && dfs(i))
done = false; // augment-able? again.. }while(!done); // Count no. of matched edges
for(int i = ; i <= N; i ++)
ret += Left[i] != -;
return ret;
}
/**********************************************/ bool check(LL val)
{
// Pick reasonable edges
for( int i= ; i<=N ; i++)
for( int j= ; j<=M ; j++)
if(dist[i][j] <= val)
edges[i].push_back(j); // Run Hopcroft-Karp
LL num_match = match(); // Clean for the next check
for(int i= ; i<= N ; i++)
edges[i].clear(); return num_match >= K;
} int main()
{
cin >> N >> M >> K; // Get input array
vector<pair<LL, LL>> P(N + ), Q(M + );
for(int i = ; i <= N; i ++)
cin >> P[i].first >> P[i].second;
for(int i = ; i <= M; i ++)
cin >> Q[i].first >> Q[i].second; // Calculate distances
for(int i= ; i<=N ; i++)
for(int j= ; j<=M ; j++)
{
LL a = P[i].first - Q[j].first;
LL b = P[i].second - Q[j].second;
dist[i][j] = a * a + b * b;
} // Binay Search the min matching result for K
LL low = , high = ;
while(low < high)
{
LL mid = (low + high) >> ;
if(check(mid)) high = mid;
else low = mid + ;
}
cout << low << endl;
return ;
}