UVALive 6908 Electric Bike dp

时间:2022-10-11 16:07:57

Electric Bike

题目连接:

https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4920

Description

Two years ago, Putri bought an electric bike (e-bike). She likes e-bike a lot since it can assist her in

cycling through steep roads when commuting to work. Over time, the battery capacity decreases. Now,

her e-bike battery capacity is so low that she needs to carefully plan when to turn on the assist and at

which level; different level of assist consumes different amount of energy and produces different assist

power.

Putri divides the road that she travels from her home to her workplace into N segments where each

segment has a steepness level. For example, the figure below shows a road with N = 7 segments.

Segment #1 #2 #3 #4 #5 #6 #7

Steepness 10 3 0 1 2 15 9

From her home, Putri has to travel from the first road segment, to the second road segment, and so on,

until the last segment to reach her work place. In the example above, the first segment has steepness of

10 which means Putri has to pedal her bike with 10 unit of energy. Her e-bike has fixed 4 assist levels

where each level generates different power, as shown in the following table:

Assist Level 0 1 2 3

Assist Power 0 4 8 11

Assist level L will consume L unit of energy from the battery and will give Putri additional pedaling

assist power according to the table above. Putri can only change the assist level to level L if the battery

has at least L energy left and she is at the beginning of a road segment. Setting an assist level where

the generated power is higher than the road steepness will cause the excess energy power to be wasted.

For example, if Putri sets the assist level L = 2 at the beginning of the first road segment (with

steepness 10), then she only needs to pedal her bike with 2 unit of energy instead of 10 (since her ebike

is assisting her with 8 unit of energy) to advance to the second road segment. If Putri sets the assist

level L = 3, her e-bike generates more power to handle the steepness 10, thus she does not need to

pedal at all, and the excess energy is wasted.

Putri can change the assist level instantly before entering a road segment, however, she does not

want to change the assist level more than K times (it’s too tiring). If there is not enough energy in

the battery to support the selected assist level for the road segment, the e-bike will shutdown at the

beginning of the road segment and Putri has to pedal through the rest of the road segments, i.e. the

assist level automatically set to 0 for the rest of the journey. Note that Putri can change her e-bike

assist level (given it’s still less than K) at the beginning of the road segment to avoid shutdown by

force. Initially at her home, the assist level is set to 0 and the battery is fully charged with E unit of

energy. Putri wants to know the minimum energy she will need to pedal the bike to reach the workplace

if she utilizes her e-bike optimally.

Input

The first line of input contains T (T ≤ 100) denoting the number of cases. Each case begins with three

integers: N, K, and E in a line (1 ≤ N ≤ 1, 000; 0 ≤ K ≤ 10; 0 ≤ E ≤ 50) as described in the problem

statement above. The next line contains N non-negative integers denoting the steepness level of i-th

segment where i = 1 . . . N respectively. The steepness level of any road segment is at most 15.

Output

For each case, output ‘Case #X: Y ’, where X is the case number starts from 1 and Y is the minimum

energy Putri needs to pedal the e-bike from her home to her workplace.

Explanation for 1st sample case:

Putri changes the assist level to 1 at (the beginning of) road segment #2, then change the assist

level to 3 at road segment #6. Thus, she needs to pedal with 10 unit of energy for road segment #1 and

4 unit of energy for road segment #6. Note that if she changes the assist level to 1 at road segment #1

and then to assist level 3 at road segment #6, then at the beginning of road segment #7 the battery

only has 2 unit of energy left and will automatically shutdown to assist level 0, thus Putri has to pedal

with 9 energy for road segment #7.

Explanation for 2nd sample case:

Putri changes the assist level to 3 at road segment #1 and then changes to assist level 2 at road

segment #2. Thus, she only needs to pedal 7 unit of energy for road segment #6 and 1 unit of energy

for road segment #7.

Explanation for 3rd sample case:

Putri changes the assist level to 3 at road segment #1, then changes to assist level 1 at road segment

2, finally changes to assist level 3 at road segment #6. Thus, she only needs to pedal 4 unit of energy

for road segment #6.

Sample Input

5

7 2 10

10 3 0 1 2 15 9

7 2 15

10 3 0 1 2 15 9

7 3 15

10 3 0 1 2 15 9

5 2 5

11 15 1 14 12

15 8 30

2 14 6 1 2 13 14 12 13 12 7 12 1 2 10

Sample Output

Case #1: 14

Case #2: 8

Case #3: 4

Case #4: 34

Case #5: 18

Hint

题意

有n个线段,每个线段长a[i]米,然后你骑着一个电瓶车,电瓶车只有E的电,然后一档需要1能量,可以帮你爬4米,2档需要2能量,可以帮你爬8米,3档需要3能量,可以帮你爬11米。

然后你不够的时候,就只能自己骑上去。

你最多修改k次档位。

如果你能量不够的话,那么你就强行退回了0档,且不能变成其他档。

题解:

虽然是个DP,但实际上是一个模拟题,特别烦……

你就把题目中所有的变量,都当成dp状态跑一边就行了。……

其实可能写成记忆化搜索的形式,更好一点。

代码

#include<bits/stdc++.h>
using namespace std;
int dp[1005][11][51][4][2];
int p[4]={0,4,8,11};
int a[1005];
int cas;
//第i个位置,j次换档,花了k,当前档为t
void solve(){
int n,k,e;
scanf("%d%d%d",&n,&k,&e);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=0;i<1005;i++)
for(int j=0;j<11;j++)
for(int k=0;k<51;k++)
for(int t=0;t<4;t++)
for(int i2=0;i2<2;i2++)
dp[i][j][k][t][i2]=1e9;
dp[0][0][0][0][0]=0;
dp[0][0][0][0][1]=0;
for(int i=0;i<n;i++){
for(int j=0;j<=k;j++){
for(int K=0;K<=e;K++){
for(int t=0;t<4;t++){
for(int m=0;m<4;m++){
dp[i+1][j][K][0][1]=min(dp[i+1][j][K][0][1],dp[i][j][K][t][0]+a[i+1]);
dp[i+1][j][K][0][1]=min(dp[i+1][j][K][0][1],dp[i][j][K][0][1]+a[i+1]);
if(t==m){
if(K+m>e)
dp[i+1][j][K][0][1]=min(dp[i+1][j][K][0][1],dp[i][j][K][t][0]+a[i+1]);
else
dp[i+1][j][K+m][m][0]=min(dp[i+1][j][K+m][m][0],dp[i][j][K][t][0]+max(0,a[i+1]-p[m]));
}else{
if(j==k){
continue;
}else if(K+m>e)
dp[i+1][j+1][K][0][1]=min(dp[i+1][j+1][K][0][1],dp[i][j][K][t][0]+a[i+1]);
else
dp[i+1][j+1][K+m][m][0]=min(dp[i+1][j+1][K+m][m][0],dp[i][j][K][t][0]+max(0,a[i+1]-p[m]));
}
}
}
}
}
}
int Ans = 1000000000;
for(int j=0;j<=k;j++)
for(int K=0;K<=e;K++)
for(int t=0;t<4;t++)
for(int i2=0;i2<2;i2++)
Ans=min(Ans,dp[n][j][K][t][i2]);
printf("Case #%d: %d\n",++cas,Ans);
}
int main(){
int t;
scanf("%d",&t);
while(t--)solve();
return 0;
}

UVALive 6908 Electric Bike dp的更多相关文章

  1. UVALive 6908---Electric Bike&lpar;DP或记录型深搜&rpar;

    题目链接 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  2. UVALive - 6952 Cent Savings dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/116998 Cent Savings Time Limit: 3000MS 问题描述 To host a re ...

  3. UVALive - 6529 找规律&plus;dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/47664 Eleven Time Limit: 5000MS 问题描述 In this problem, we ...

  4. UVaLive 6801 Sequence &lpar;计数DP&rpar;

    题意:给定一个序列,有 n 个数,只有01,然后你进行k次操作,把所有的1变成0,求有多种方法. 析:DP是很明显的,dp[i][j] 表示进行第 i 次操作,剩下 j 个1,然后操作就两种,把1变成 ...

  5. UVaLive 6697 Homework Evaluation &lpar;DP&rpar;

    题意:给出一个长字符串,再给一个短字符串,进行匹配,如果第i个恰好匹配,则 +8,:如果不匹配,可以给长或短字符串添加-,先后匹配,这样-3, 连续的长字符串添加-,需要减去一个4:也可不给添加-,则 ...

  6. UVaLive 7374 Racing Gems &lpar;DP,LIS&rpar;

    题意:以辆赛车可以从x轴上任意点出发,他的水平速度允许他向每向上移动v个单位,就能向左或向右移动v/r个单位(也就是它的辐射范围是个等腰三角形) 现在赛车从x轴出发,问它在到达终点前能吃到的最多钻石. ...

  7. UVALive 6947 Improvements(DP&plus;树状数组)

    [题目链接] https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=sho ...

  8. UVaLive 3490 Generator &lpar;KMP &plus; DP &plus; Gauss&rpar;

    题意:随机字母组成一个串,有一个目标串,当这个由随机字母组成的串出现目标串就停止,求这个随机字母组成串的期望长度. 析:由于只要包含目标串就可以停止,所以可以先把这个串进行处理,也就是KMP,然后dp ...

  9. UVALive 5983 二分答案&plus;dp

    想了很久都想不出怎么dp,然后发现有些例子,如果你开始不确定起始值的话,是不能dp的,每种状态都有可能,所以只能二分一个答案,确定开始的val值,来dp了. #include <cstdio&g ...

随机推荐

  1. Linux常用命令学习4---(挂载命令mount umount、用户登陆查看和用户交互命令 w who last lastlog)

    紧接着上一篇Linux的命令行的学习:Linux学习3---(文件的压缩和解压缩命令zip unzip tar.关机和重启命令shutdown reboot……) 1.挂载命令     简介      ...

  2. MySql避免重复插入记录

    今天用python抓取数据入库需要避免重复数据插入,在网上找了一些方法: 方案一:使用ignore关键字 如果是用主键primary或者唯一索引unique区分了记录的唯一性,避免重复插入记录可以使用 ...

  3. 凸多边形的三角剖分&lpar;dp好题&rpar;

    [题目描述]给定一具有N个顶点(从1到N编号)的凸多边形,每个顶点的权均已知.问如何把这个凸多边形划分成N-2个互不相交的三角形,使得这些三角形顶点的权的乘积之和最小?[输入格式]第一行 顶点数N(N ...

  4. 设置emacs插件flycheck使用jslint eslint

    emacs的flycheck插件支持使用 jslint 和eslint   (setq flycheck-javascript-eslint-executable "~/.nvm/versi ...

  5. NSInvocation Basics

    In this article I'm going to cover the basics and usages of NSInvocation. What is NSInvocation? Appl ...

  6. delphi 插入 HTML代码 播放器

    Delphi在Webbrowser中插入 HTML/java script代码 使用方法将下面的代码赋值到1个记事本里保存,然后保存为xxx.htm就可以看到效果使用PasteHtml实现功能 的事件 ...

  7. WordPress RokStories插件&OpenCurlyQuote;thumb&period;php’多个安全漏洞

    漏洞名称: WordPress RokStories插件‘thumb.php’多个安全漏洞 CNNVD编号: CNNVD-201309-438 发布时间: 2013-09-26 更新时间: 2013- ...

  8. qt&colon; 获取sql数据表的所有的字段;

    1. mysql 数据库: 转载: https://www.cnblogs.com/fuqia/p/8994080.html mysql安装成功后可以看到已经存在mysql.information_s ...

  9. &lbrack;教程&rsqb;教你如何制作彩色的3D打印Groot

    http://mc.dfrobot.com.cn/forum.php?mod=viewthread&tid=24916 准备工作: <ignore_js_op>  3D打印高精度G ...

  10. hexo博客更新主题后上传Git操作

    克隆主题: git clone https://github.com/SuperKieran/TKL.git _config.yml文件中主题改为新增主题 # Extensions ## Plugin ...